Page 244 - 《应用声学》2025年第2期
P. 244

504                                                                                  2025 年 3 月


             [12] 陈奕霏, 蔡耀仪, 李诗文. 基于轻量型卷积视觉 Transformer             面缺陷检测 [J]. 光学技术, 2021, 47(6): 695–702.
                 的锑浮选工况识别 [J]. 激光与光电子学进展, 2023, 60(6):             Xia Yu, Xiao Jinqiu, Weng Yushang. Surface defect de-
                 259–271.                                          tection of polarizer based on improved Faster-RCNN[J].
                 Chen Yifei, Cai Yaoyi, Li Shiwen.  Working condition  Optical Technique, 2021, 47(6): 695–702.
                 recognition based on lightweight convolution vision trans-  [17] 顾超越, 李喆, 史晋涛, 等. 基于改进 Faster-RCNN 的无人
                 former network for antimony flotation process[J]. Laser &  机巡检架空线路销钉缺陷检测 [J]. 高电压技术, 2020, 46(9):
                 Optoelectronics Progress, 2023, 60(6): 259–271.   3089–3096.
             [13] 赵鹏飞, 钱孟波, 周凯琪, 等. 改进 YOLOv7-Tiny 农田环             Gu Chaoyue, Li Zhe, Shi Jintao, et al.  Detection for
                 境下甜椒果实检测 [J]. 计算机工程与应用, 2023, 59(15):             pin defects of overhead lines by UAV patrol image based
                 329–340.                                          on improved Faster-RCNN[J]. High Voltage Engineering,
                 Zhao Pengfei, Qian Mengbo, Zhou Kaiqi, et al. Improve-  2020, 46(9): 3089–3096.
                 ment of sweet pepper fruit detection in YOLOv7-Tiny  [18] He K, Zhang X, Ren S, et al. Deep residual learning for
                 farming environment[J]. Computer Engineering and Ap-  image recognition[C]// Proceedings of the IEEE Confer-
                 plications, 2023, 59(15): 329–340.                ence on Computer Vision and Pattern Recognition, 2016:
             [14] 吴鸿杨, 康维新. 基于改进 RetinaNet 的多类焊接缺陷 X 射             770–778.
                 线图像检测模型 [J]. 计算机应用, 2022, 42(S1): 100–105.     [19] Lin T Y, Dollár P, Girshick R, et al. Feature pyramid
                 Wu Hongyang, Kang Weixin.  X-ray image detection  networks for object detection[C]// 2017 IEEE Conference
                 model for multi-type welding defects based on improved  on Computer Vision and Pattern Recognition (CVPR),
                 RetinaNet[J]. Journal of Computer Applications, 2022,  2017: 2117–2125.
                 42(S1): 100–105.                               [20] He K, Gkioxari G, Dollár P, et al. Mask R-CNN[C]//
             [15] 林娜, 冯丽蓉, 张小青. 基于优化 Faster-RCNN 的遥感影像             2017 IEEE International Conference on Computer Vision
                 飞机检测 [J]. 遥感技术与应用, 2021, 36(2): 275–284.          (ICCV), 2017: 2961–2969.
                 Lin Na, Feng Lirong, Zhang Xiaoqing. Aircraft detec-  [21] 彭豪, 李晓明. 基于改进 Faster R-CNN 的小目标检测模
                 tion in remote sensing image based on optimized Faster-  型 [J]. 电子测量技术, 2021, 44(24): 122–127.
                 RCNN[J]. Remote Sensing Technology and Application,  Peng Hao, Li Xiaoming. Small target detection model
                 2021, 36(2): 275–284.                             based on improved Faster R-CNN[J]. Electronic Measure-
             [16] 夏禹, 肖金球, 翁玉尚. 基于改进 Faster-RCNN 的偏光片表             ment Technology, 2021, 44(24): 122–127.
   239   240   241   242   243   244   245   246   247   248   249