Page 244 - 《应用声学》2025年第2期
P. 244
504 2025 年 3 月
[12] 陈奕霏, 蔡耀仪, 李诗文. 基于轻量型卷积视觉 Transformer 面缺陷检测 [J]. 光学技术, 2021, 47(6): 695–702.
的锑浮选工况识别 [J]. 激光与光电子学进展, 2023, 60(6): Xia Yu, Xiao Jinqiu, Weng Yushang. Surface defect de-
259–271. tection of polarizer based on improved Faster-RCNN[J].
Chen Yifei, Cai Yaoyi, Li Shiwen. Working condition Optical Technique, 2021, 47(6): 695–702.
recognition based on lightweight convolution vision trans- [17] 顾超越, 李喆, 史晋涛, 等. 基于改进 Faster-RCNN 的无人
former network for antimony flotation process[J]. Laser & 机巡检架空线路销钉缺陷检测 [J]. 高电压技术, 2020, 46(9):
Optoelectronics Progress, 2023, 60(6): 259–271. 3089–3096.
[13] 赵鹏飞, 钱孟波, 周凯琪, 等. 改进 YOLOv7-Tiny 农田环 Gu Chaoyue, Li Zhe, Shi Jintao, et al. Detection for
境下甜椒果实检测 [J]. 计算机工程与应用, 2023, 59(15): pin defects of overhead lines by UAV patrol image based
329–340. on improved Faster-RCNN[J]. High Voltage Engineering,
Zhao Pengfei, Qian Mengbo, Zhou Kaiqi, et al. Improve- 2020, 46(9): 3089–3096.
ment of sweet pepper fruit detection in YOLOv7-Tiny [18] He K, Zhang X, Ren S, et al. Deep residual learning for
farming environment[J]. Computer Engineering and Ap- image recognition[C]// Proceedings of the IEEE Confer-
plications, 2023, 59(15): 329–340. ence on Computer Vision and Pattern Recognition, 2016:
[14] 吴鸿杨, 康维新. 基于改进 RetinaNet 的多类焊接缺陷 X 射 770–778.
线图像检测模型 [J]. 计算机应用, 2022, 42(S1): 100–105. [19] Lin T Y, Dollár P, Girshick R, et al. Feature pyramid
Wu Hongyang, Kang Weixin. X-ray image detection networks for object detection[C]// 2017 IEEE Conference
model for multi-type welding defects based on improved on Computer Vision and Pattern Recognition (CVPR),
RetinaNet[J]. Journal of Computer Applications, 2022, 2017: 2117–2125.
42(S1): 100–105. [20] He K, Gkioxari G, Dollár P, et al. Mask R-CNN[C]//
[15] 林娜, 冯丽蓉, 张小青. 基于优化 Faster-RCNN 的遥感影像 2017 IEEE International Conference on Computer Vision
飞机检测 [J]. 遥感技术与应用, 2021, 36(2): 275–284. (ICCV), 2017: 2961–2969.
Lin Na, Feng Lirong, Zhang Xiaoqing. Aircraft detec- [21] 彭豪, 李晓明. 基于改进 Faster R-CNN 的小目标检测模
tion in remote sensing image based on optimized Faster- 型 [J]. 电子测量技术, 2021, 44(24): 122–127.
RCNN[J]. Remote Sensing Technology and Application, Peng Hao, Li Xiaoming. Small target detection model
2021, 36(2): 275–284. based on improved Faster R-CNN[J]. Electronic Measure-
[16] 夏禹, 肖金球, 翁玉尚. 基于改进 Faster-RCNN 的偏光片表 ment Technology, 2021, 44(24): 122–127.