Page 71 - 201901
P. 71

第 38 卷 第 1 期               郭颖等: 偏度最大化多通道逆滤波语声去混响研究                                           67


             尤其在混响较强的情况下优势更为明显,且算法复                             [10] Papoulis A, Hoffman J G. Probability, random variables,
             杂度更低,对高斯噪声的鲁棒性更强。应该指出的                                and stochastic processes[M]. New York: McGraw-Hill,
                                                                   2013.
             是,本文所提的方法主要用于抑制早期混响所引起
                                                                [11] Gillespie B W, Malvar H S, Florêncio D A F. Speech
             的谱染色现象,而对较长混响时间所引起的拖尾现                                dereverberation via maximum-kurtosis subband adaptive
             象抑制不明显,结合谱减法等后处理方法可以对残                                filtering[C]//Acoustics, Speech, and Signal Processing,
             余晚期混响进行抑制,进而进一步提升可懂度。其                                2001.  Proceedings.(ICASSP’01).  2001 IEEE Interna-
                                                                   tional Conference on. IEEE, 2001, 6: 3701–3704.
             次,在研究中发现,在混响较强情况下,相比于多通                            [12] Wu M, Wang D L. A two-stage algorithm for one-
             道方法,单通道算法表现出了明显的局限性。另外,                               microphone reverberant speech enhancement[J]. IEEE
             在实际应用中,本文所提方法的实时处理问题也是                                Transactions on Audio Speech & Language Processing,
                                                                   2006, 14(3): 774–784.
             值得进一步深入研究的。
                                                                [13] Pääjärvi P, Leblanc J. Skewness maximization for impul-
                                                                   sive sources in blind deconvolution[C]//Nordic Signal Pro-
                            参 考     文   献                          cessing Symposium: 09/06/2004-11/06/2004.  Helsinki
                                                                   University of Technology, 2004: 304–307.
                                                                [14] Mosayyebpour S, Sheikhzadeh H, Gulliver T A, et al.
              [1] Flanagan J L, Johnston J D, Zahn R, et al. Computer-
                                                                   Single-microphone LP residual skewness-based inverse fil-
                 steered microphone arrays for sound transduction in large
                                                                   tering of the room impulse response[J]. IEEE Transactions
                 rooms[J]. The Journal of the Acoustical Society of Amer-
                                                                   on Audio, Speech & Language Processing, 2012, 20(5):
                 ica, 1985, 78(5): 1508–1518.
                                                                   1617–1632.
              [2] 肖栋, 向阳, 卓瑞岩, 等. 基于波束形成的多类型多声源定位
                                                                [15] Yoshioka T, Hikichi T, Miyoshi M, et al. Robust decom-
                 研究 [J]. 应用声学, 2017, 36(3): 220–227.
                                                                   position of inverse filter of channel and prediction error
                 Xiao Dong, Xiang Yang, Zhuo Ruiyan, et al. Location of
                                                                   filter of speech signal for dereverberation[C]//Signal Pro-
                 multiple sound source with multi-type based on beam-
                                                                   cessing Conference, 2006 14th European.  IEEE, 2006:
                 forming[J]. Journal of Applied Acoustics, 2017, 36(3):
                                                                   1–5.
                 220–227.
                                                                [16] Rabiner L R, Schafer R W. Digital processing of speech
              [3] Boll S F. Suppression of acoustic noise in speech using
                                                                   signals[M]. Englewood Cliffs, NJ: Prentice-Hall, 1978.
                 spectral subtraction[C]//Acoustics, Speech, and Signal
                                                                [17] Allen J B, Berkley D A. Image method for efficiently sim-
                 Processing, IEEE International Conference on ICASSP.
                                                                   ulating small-room acoustics[J]. The Journal of the Acous-
                 IEEE, 1979: 200–203.
                                                                   tical Society of America, 1979, 65(4): 943–950.
              [4] Li R, Bao C, Xia B, et al.  Speech enhancement us-
                                                                [18] 饶宇安. 关于声学比 -混响时间 -语言清晰度关系的实验与理
                 ing the combination of adaptive wavelet threshold and
                                                                   论计算 [J]. 声学学报, 1981, 17(1): 20–33.
                 spectral subtraction based on wavelet packet decomposi-
                                                                   Rao Yu’an. Experimental and theoretical calculation of
                 tion[C]//Signal Processing (ICSP), 2012 IEEE 11th Inter-
                                                                   the relationship among acoustic ratio, reverberation time
                 national Conference on. IEEE, 2012, 1: 481–484.
                                                                   and speech intelligibility[J]. Acta Acustica, 1981, 17(1):
              [5] Lebart K, Boucher J M, Denbigh P N. A new method
                                                                   20–33.
                 based on spectral subtraction for speech dereverbera-
                                                                [19] Habets E A P. Single- and multi-microphone speech dere-
                 tion[J]. Acta Acustica united with Acustica, 2001, 87(3):
                                                                   verberation using spectral enhancement[J]. Dissertation
                 359–366.
                                                                   Abstracts International, 2007, 68(4): 10.6100/IR627677.
              [6] Fang Y, Feng H, Chen Y. A robust interaural time differ-
                                                                [20] Rix A W, Beerends J G, Hollier M P, et al.  Percep-
                 ences estimation and dereverberation algorithm based on
                                                                   tual evaluation of speech quality (PESQ)-a new method
                 the coherence function[J]. Applied Acoustics, 2018, 129:
                                                                   for speech quality assessment of telephone networks and
                 126–134.
                                                                   codecs[C]. Proceedings of the Acoustics, Speech, and Sig-
              [7] Peng R, Tan Z H, Li X, et al. A perceptually motivated
                                                                   nal Processing, 2001, 2: 749–752.
                 LP residual estimator in noisy and reverberant environ-
                                                                [21] Fall T H, Zheng C, Chan W Y. A non-intrusive qual-
                 ments[J]. Speech Communication, 2018, 96: 129–141.
                                                                   ity and intelligibility measure of reverberant and derever-
              [8] Zheng C, Peng R, Li J, et al.  A constrained MMSE
                                                                   berated speech[J]. IEEE Transactions on Audio Speech &
                 LP residual estimator for speech dereverberation in noisy
                                                                   Language Processing, 2010, 18(7): 1766–1774.
                 environments[J]. IEEE Signal Processing Letters, 2014,
                                                                [22] Schwarz A, Kellermann W. Coherent-to-diffuse power ra-
                 21(12): 1462–1466.
                                                                   tio estimation for dereverberation[J]. IEEE/ACM Trans-
              [9] 赵红, 李双田. 改进的多级线性预测晚期混响抑制算法 [J]. 信
                                                                   actions on Audio Speech & Language Processing, 2015,
                 号处理, 2014, 30(6): 674–682.
                                                                   23(6): 1006–1018.
                 Zhao Hong, Li Shuangtian.  Improved late reverber-
                                                                [23] Zheng C, Tan Z H, Peng R, et al. Guided spectrogram
                 ation suppression algorithm using multiple-step linear
                                                                   filtering for speech dereverberation[J]. Applied Acoustics,
                 prediction[J]. Journal of Signal Processing, 2014, 30(6):
                                                                   2018, 134(5): 154–159.
                 674–682.
   66   67   68   69   70   71   72   73   74   75   76