Page 95 - 201903
P. 95

第 38 卷 第 3 期              李云红等: 一种改进的 DNN-HMM 的语音识别方法                                       377


              [8] Wang J, Li L, Wang D, et al. Research on generalization  gressive moving average spectrogram features and chan-
                 property of time-varying Fbank-weighted MFCC for I-  nel dropout[J]. Pattern Recognition Letters, 2017, 100(1):
                 vector based speaker verification[C]// International Sym-  44–50.
                 posium on Chinese Spoken Language Processing. IEEE,  [13] Miloslavskaya V, Trifonov P. Sequential decoding of po-
                 2014: 423–423.                                    lar codes[J]. IEEE Communications Letters, 2014, 18(7):
              [9] Hinton G E, Osindero S, Teh Y W. A fast learning algo-  1127–1130.
                 rithm for deep belief nets[J]. Neural Computation, 2006,  [14] Jiang Y B, Gao X N, Han P. Application of maximum en-
                 18(7): 1527–1554.                                 tropy model in distribution of vehicle speed[J]. Advanced
             [10] Mohamed A R, Dahl G, Hinton G. Acoustic modeling us-  Materials Research, 2015, 1079–1080: 942–945.
                 ing deep belief networks[J]. IEEE Transactions on Audio,  [15] Lopes C, Perdigao F. Phone Recognition on the TIMIT
                 Speech and Language Processing, 2012, 20(1): 14–22.  Dataset[M]//Speech Technologies. InTech, 2011.
             [11] 张劲松, 高迎明, 解焱陆. 基于 DNN 的发音偏误趋势检测 [J].          [16] Salakhutdinov R, Hinton G E. Deep Boltzmann ma-
                 清华大学学报: 自然科学版, 2016, 56(11): 1220–1225.           chines[C]//Proceedings of International Conference on
                 Zhang Jinsong, Gao Yingming, Xie Yanlu. Mispronunci-  Artificial Intelligence and Statistics 2009. Brookline, MA,
                 ation tendency detection using deep neural networks[J].  USA: Microtome Publishing, 2009: 448–455.
                 Journal of Tsinghua University(Science and Technology),  [17] Hu W J, Fu M J, Pan W L. Primi speech recognition
                 2016, 56(11): 1220–1225.                          based on deep neural network[C]//Proceedings of IEEE
             [12] Kovacs G, Toth L, Compernolle D V, et al.  Increas-  International Conference on Intelligent Systems. Wash-
                 ing the robustness of CNN acoustic models using autore-  ington D.C., USA: IEEE Press, 2016: 667–671.
   90   91   92   93   94   95   96   97   98   99   100