Page 145 - 《应用声学》2020年第1期
P. 145
第 39 卷 第 1 期 李阿杰等: 碟形超声变幅杆的设计 141
[9] Rochebrochard S L, Suptil J, Blais J F, et al. Sonochem- University Press, 2006.
ical efficiency dependence on liquid height and frequency [18] COMSOL. COMSOL multiphysics modeling guilde[M].
in an improved sonochemical reactor[J]. Ultrasonics Sono- Version 4.2. 2012.
chemistry, 2012, 19(2): 280–285. [19] Wang Y, Yao M. Realization of cavitation fields based
[10] Sun De, Bala G, Zhang S, et al. Numerical investi- on the acoustic resonance modes in an immersion-type
gation of the inertial cavitation threshold under multi- sonochemical reactor[J]. Ultrasonics Sonochemistry, 2013,
frequency ultrasound[J]. Ultrasonics Sonochemistry, 2018, 20(1): 565–570.
41: 419–426. [20] 王成会, 林书玉. 超声场中气泡的耦合运动 [J]. 声学学报,
[11] Niemczewski B. Cavitation intensity of water under prac- 2011, 36(3): 325–331.
tical ultrasonic cleaning conditions[J]. Ultrasonics Sono- Wang Chenghui, Lin Shuyu. The coupled motion of bub-
chemistry, 2014, 21(1): 354–359. bles in ultrasonic field[J]. Acta Acustica, 2011, 36(3):
[12] Peshkovsky S L, Peshkovsky A S. Matching a transducer 325–331.
to water at cavitation: acoustic horn design principles[J]. [21] 陈红, 李晓静, 万明习, 等. 高强度聚焦超声场中空化泡群的
Ultrasonics Sonochemistry, 2007, 14(3): 313–322. 结构及其形成过程 [J]. 声学学报, 2006, 31(6): 532–535.
[13] Wei Z, Kosterman J A, Xiao R, et al. Designing and char- Chen Hong, Li Xiaojing, Wan Mingxi, et al. Cavita-
acterizing a multi-stepped ultrasonic horn for enhanced tion bubble structure and its formation process in high-
sonochemical performance[J]. Ultrasonics Sonochemistry, intensity focused ultrasound field[J]. Acta Acustica, 2006,
2015, 27: 325–333. 31(6): 532–535.
[14] Sasaki T, Yoshida K, Nakagawa M, et al. Effect [22] 焦俊杰, 何勇, 何源, 等. 超声场中气泡融合的影响因素分
of horn tip geometry on ultrasonic cavitation peen- 析 [J]. 声学学报, 2016, 41(6): 851–856.
ing[M]//Residual Stress, Thermomechanics & Infrared Jiao Junjie, He Yong, He Yuan, et al. Analysis on the
Imaging, Hybrid Techniques And Inverse Problems, Vol. factors that influence bubble coalescence in an acoustic
9. Conference Proceedings of the Society for Experimen- field[J]. Acta Acustica, 2016, 41(6): 851–856.
tal Mechanics, 2016: 139–146. [23] Hatanaka S, Yasui K, Kozuka T, et al. Influence of bub-
[15] Beranek L. Acoustics[M]. Second Edition. New York: ble clustering on multibubble luminescence[J]. Utrasonic,
American Institute of Physics, 1986. 2002, 40(1–8): 655–660.
[16] 林仲茂. 超声变幅杆的原理和设计 [M]. 北京: 科学出版社, [24] Yi H, Lu Q, Wang Y, et al. Degradation of organic
1987. wastewater by hydrodynamic cavitation combined with
[17] Moheimani S O R, Fleming A J. Piezoelectric transduc- acoustic cavitation[J]. Ultrasonics Sonochemistry, 2018,
ers for vibration control and damping[M]. Oxford: Oxford 43: 156–165.