Page 14 - 《应用声学》2021年第1期
P. 14
10 2021 年 1 月
声场进行了建模仿真和成像验证。结果表明:(1) 相 Ultrasonics, Ferroelectrics, and Frequency Control, 1996,
对于无补偿时的成像结果,无论使用近似射线法还 43(6): 1122–1129.
[9] Aubry J F, Tanter M, Pernot M, et al. Experimental
是时间反转法,都能够有效地校正因颅骨造成的相
demonstration of noninvasive transskull adaptive focusing
位畸变,从而减小像点位置偏差、分辨率、对比度低 based on prior computed tomography scans[J]. The Jour-
等问题。(2) 使用时间反转和近似射线法的仿真结 nal of the Acoustical Society of America, 2003, 113(1):
84–93.
果存在微小的偏差,主要是由于在使用射线法时并
[10] Rayleigh J W S B. The theory of sound[M]. London:
没有考虑颅骨造成的声波折射,从而在确定声传播 Macmillan, 1896.
路径时存在一定误差。(3) 时间反转法成像的精度 [11] Ryan M J, Kullervo H. Comparison of analytical and nu-
要好于近似射线法,但所需的计算资源和时间都要 merical approaches for CT-based aberration correction in
transcranial passive acoustic imaging[J]. Physics Medicine
远远大于近似射线法。(4) 无论近似射线法还是时 and Biology, 2016, 61(1): 23–36.
间反转法,经过平面波多角度发射和相干复合处理 [12] Sukhoruchkin D A, Yuldashev P V, Tsysar S A, et al.
后都能够一定程度上提高成像的对比度和分辨率。 Use of pulse-echo ultrasound imaging in transcranial di-
agnostics of brain structures[J]. Bulletin of the Russian
Academy of Sciences: Physics, 2018, 82(5): 507–511.
致谢 感谢浙江大学医学院附属第四医院提供的 [13] Lindsey B D, Smith S W. Refraction correction in 3D tran-
颅骨CT扫描文件。 scranial ultrasound imaging[J]. Ultrasonic Imaging, 2014,
36(1): 35–54.
[14] Chen J, Li Y Q, Li B Y, et al. Ray theory based transcra-
参 考 文 献 nial phase correction for intracranial imaging: a phantom
study[J]. IEEE Access, 2019, 7: 163013–163021.
[15] Macé E, Montaldo G, Cohen I, et al. Functional ultra-
[1] 冯诺. 超声手册 [M]. 南京: 南京大学出版社, 1999.
sound imaging of the brain[J]. Nature Methods, 2011,
[2] Robba C, Goffi A, Geeraerts T, et al. Brain ultrasonog-
8(8): 662–664.
raphy: methodology, basic and advanced principles and
[16] Du B, Wang J Y, Zheng H T, et al. A novel transcranial
clinical applications. A narrative review[J]. Intensive Care
Medicine, 2019, 45(7): 913–927. ultrasound imaging method with diverging wave transmis-
[3] Shen C, Xu J, Fang N X, et al. Anisotropic complemen- sion and deep learning approach[J]. Computer Methods
Programs in Biomedicine, 2020, 186: 105308.
tary acoustic metamaterial for canceling out aberrating
layers[J]. Physical Review X, 2014, 4(4): 041033. [17] 胡陈文宝. 基于多角度平面波复合的脑成像技术研究 [D]. 深
[4] Clement G T, Hynynen K. Correlation of ultrasound 圳: 中国科学院深圳先进技术研究院, 2018.
phase with physical skull properties[J]. Ultrasound in [18] Montaldo G, Tanter M, Bercoff M, et al. Coherent plane-
Medicine and Biology, 2002, 28(5): 617–624. wave compounding for very high frame rate ultrasonogra-
[5] Clement G T, Hynynen K. A non-invasive method for phy and transient elastography[J]. IEEE Transactions on
focusing ultrasound through the human skull[J]. Physics Ultrasonics, Ferroelectrics, and Frequency Control, 2009,
Medicine and Biology, 2002, 47(8): 1219–1236. 56(3): 489–506.
[6] Fink M. Time reversal of ultrasonic fields. I. Basic princi- [19] Ding X, Wang Y, Zhang Q, et al. Modulation of transcra-
ples[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, nial focusing thermal deposition in nonlinear HIFU brain
and Frequency Control, 1992, 39(5): 555–566. surgery by numerical simulation[J]. Physics Medicine Bi-
[7] Wu F, Thomas J L, Fink M. Time reversal of ultrasonic ology, 2015, 60(10): 3975–3998.
fields. II. Experimental results[J]. IEEE Transactions on [20] Maimbourg G, Guilbert J, Bancel T, et al. Com-
Ultrasonics, Ferroelectrics, and Frequency Control, 1992, putationally efficient transcranial ultrasonic focusing:
39(5): 567–578. taking advantage of the high correlation length of
[8] Thomas J L, Fink M. Ultrasonic beam focusing through the human skull[J]. IEEE Transactions on Ultra-
tissue inhomogeneities with a time reversal mirror: ap- sonics, Ferroelectrics, and Frequency Control, 2019
plication to transskull therapy[J]. IEEE Transactions on 10.1109/TUFFC.2020.2993718.