Page 14 - 《应用声学》2021年第1期
P. 14

10                                                                                   2021 年 1 月


             声场进行了建模仿真和成像验证。结果表明:(1) 相                             Ultrasonics, Ferroelectrics, and Frequency Control, 1996,
             对于无补偿时的成像结果,无论使用近似射线法还                                43(6): 1122–1129.
                                                                 [9] Aubry J F, Tanter M, Pernot M, et al. Experimental
             是时间反转法,都能够有效地校正因颅骨造成的相
                                                                   demonstration of noninvasive transskull adaptive focusing
             位畸变,从而减小像点位置偏差、分辨率、对比度低                               based on prior computed tomography scans[J]. The Jour-
             等问题。(2) 使用时间反转和近似射线法的仿真结                              nal of the Acoustical Society of America, 2003, 113(1):
                                                                   84–93.
             果存在微小的偏差,主要是由于在使用射线法时并
                                                                [10] Rayleigh J W S B. The theory of sound[M]. London:
             没有考虑颅骨造成的声波折射,从而在确定声传播                                Macmillan, 1896.
             路径时存在一定误差。(3) 时间反转法成像的精度                           [11] Ryan M J, Kullervo H. Comparison of analytical and nu-
             要好于近似射线法,但所需的计算资源和时间都要                                merical approaches for CT-based aberration correction in
                                                                   transcranial passive acoustic imaging[J]. Physics Medicine
             远远大于近似射线法。(4) 无论近似射线法还是时                              and Biology, 2016, 61(1): 23–36.
             间反转法,经过平面波多角度发射和相干复合处理                             [12] Sukhoruchkin D A, Yuldashev P V, Tsysar S A, et al.
             后都能够一定程度上提高成像的对比度和分辨率。                                Use of pulse-echo ultrasound imaging in transcranial di-
                                                                   agnostics of brain structures[J]. Bulletin of the Russian
                                                                   Academy of Sciences: Physics, 2018, 82(5): 507–511.
             致谢    感谢浙江大学医学院附属第四医院提供的                           [13] Lindsey B D, Smith S W. Refraction correction in 3D tran-
             颅骨CT扫描文件。                                             scranial ultrasound imaging[J]. Ultrasonic Imaging, 2014,
                                                                   36(1): 35–54.
                                                                [14] Chen J, Li Y Q, Li B Y, et al. Ray theory based transcra-
                            参 考     文   献                          nial phase correction for intracranial imaging: a phantom
                                                                   study[J]. IEEE Access, 2019, 7: 163013–163021.
                                                                [15] Macé E, Montaldo G, Cohen I, et al. Functional ultra-
              [1] 冯诺. 超声手册 [M]. 南京: 南京大学出版社, 1999.
                                                                   sound imaging of the brain[J]. Nature Methods, 2011,
              [2] Robba C, Goffi A, Geeraerts T, et al. Brain ultrasonog-
                                                                   8(8): 662–664.
                 raphy: methodology, basic and advanced principles and
                                                                [16] Du B, Wang J Y, Zheng H T, et al. A novel transcranial
                 clinical applications. A narrative review[J]. Intensive Care
                 Medicine, 2019, 45(7): 913–927.                   ultrasound imaging method with diverging wave transmis-
              [3] Shen C, Xu J, Fang N X, et al. Anisotropic complemen-  sion and deep learning approach[J]. Computer Methods
                                                                   Programs in Biomedicine, 2020, 186: 105308.
                 tary acoustic metamaterial for canceling out aberrating
                 layers[J]. Physical Review X, 2014, 4(4): 041033.  [17] 胡陈文宝. 基于多角度平面波复合的脑成像技术研究 [D]. 深
              [4] Clement G T, Hynynen K. Correlation of ultrasound  圳: 中国科学院深圳先进技术研究院, 2018.
                 phase with physical skull properties[J]. Ultrasound in  [18] Montaldo G, Tanter M, Bercoff M, et al. Coherent plane-
                 Medicine and Biology, 2002, 28(5): 617–624.       wave compounding for very high frame rate ultrasonogra-
              [5] Clement G T, Hynynen K. A non-invasive method for  phy and transient elastography[J]. IEEE Transactions on
                 focusing ultrasound through the human skull[J]. Physics  Ultrasonics, Ferroelectrics, and Frequency Control, 2009,
                 Medicine and Biology, 2002, 47(8): 1219–1236.     56(3): 489–506.
              [6] Fink M. Time reversal of ultrasonic fields. I. Basic princi-  [19] Ding X, Wang Y, Zhang Q, et al. Modulation of transcra-
                 ples[J]. IEEE Transactions on Ultrasonics, Ferroelectrics,  nial focusing thermal deposition in nonlinear HIFU brain
                 and Frequency Control, 1992, 39(5): 555–566.      surgery by numerical simulation[J]. Physics Medicine Bi-
              [7] Wu F, Thomas J L, Fink M. Time reversal of ultrasonic  ology, 2015, 60(10): 3975–3998.
                 fields. II. Experimental results[J]. IEEE Transactions on  [20] Maimbourg G, Guilbert J, Bancel T, et al.  Com-
                 Ultrasonics, Ferroelectrics, and Frequency Control, 1992,  putationally efficient transcranial ultrasonic focusing:
                 39(5): 567–578.                                   taking advantage of the high correlation length of
              [8] Thomas J L, Fink M. Ultrasonic beam focusing through  the human skull[J]. IEEE Transactions on Ultra-
                 tissue inhomogeneities with a time reversal mirror: ap-  sonics, Ferroelectrics, and Frequency Control, 2019
                 plication to transskull therapy[J]. IEEE Transactions on  10.1109/TUFFC.2020.2993718.
   9   10   11   12   13   14   15   16   17   18   19