Page 63 - 《应用声学》2021年第1期
P. 63

第 40 卷 第 1 期              高凡等: 超声射频信号的甲状腺结节智能诊断方法                                            59


             衷,有望在此基础上建立一套可用于甲状腺结节的                             [12] Fang D, Ma W, Xu L, et al. A predictive model to dis-
             预筛查的临床智能诊断系统。                                         tinguish papillary thyroid carcinomas from benign thyroid
                                                                   nodules using ultrasonographic features: a single-center,
                                                                   retrospective analysis[J]. Medical Science Monitor, 2019,
                                                                   25: 9409–9415.
                            参 考     文   献
                                                                [13] Yin L, Zhang W, Bai W, et al. Relationship between
                                                                   morphologic characteristics of ultrasonic calcification in
              [1] Chen W, Zheng R, Baade P D, et al. Cancer statistics  thyroid nodules and thyroid carcinoma[J]. Ultrasound in
                 in China, 2015[J]. CA: A Cancer Journal for Clinicians,  Medicine and Biology, 2020, 46(1): 20–25.
                 2016, 66(2): 115–132.                          [14] Hu L, He N, Ye L, et al. Evaluation of the stiffness of tis-
              [2] Liu Z, Jiang Y, Fang Q, et al. Future of cancer incidence  sues surrounding thyroid nodules with shear wave elastog-
                 in Shanghai, China: predicting the burden upon the age-  raphy[J]. Journal of Ultrasound in Medicine, 2018, 37(9):
                 ing population[J]. Cancer Epidemiol, 2019, 60: 8–15.  2251–2261.
              [3] Nikiforov Y E, Ohori N P, Hodak S P, et al. Impact  [15] Sun C, Zhang Y, Chang Q, et al.  Evaluation of a
                 of mutational testing on the diagnosis and management  deep learning-based computer-aided diagnosis system for
                 of patients with cytologically indeterminate thyroid nod-  distinguishing benign from malignant thyroid nodules
                 ules: a prospective analysis of 1056 FNA samples[J]. Jour-  in ultrasound images[J]. Medical Physics, 2020, 47(9):
                 nal of Clinical Endocrinology & Metabolism, 2011, 96(11):  3952–3960.
                 3390–3397.                                     [16] Liang X, Yu J, Liao J, et al. Convolutional neural net-
              [4] Moreira-Souza L, Michels M, de Melo L P L, et al. Bright-  work for breast and thyroid nodules diagnosis in ultra-
                 ness and contrast adjustments influence the radiographic  sound imaging[J]. BioMed Research International, 2020,
                 detection of soft tissue calcification[J]. Oral Disease, 2019,  2020: 1763803.
                 25(7): 1809–1814.                              [17] Ma J, Wu F, Zhu J, et al. A pre-trained convolutional
              [5] Khasawneh A, Takeshita Y, Hisatomi M, et al. Incidental  neural network based method for thyroid nodule diagno-
                 findings in the thyroid gland on computed tomography  sis[J]. Ultrasonics, 2017, 73: 221–230.
                 images of the oral and maxillofacial region[J]. Oncology  [18] Liu C, Xie L, Kong W, et al. Prediction of suspicious
                 Letters, 2020, 19(3): 2005–2010.                  thyroid nodule using artificial neural network based on
              [6] Sarlis J N, Brucker-Davis F, Doppman J L, et al. MRI-  radiofrequency ultrasound and conventional ultrasound:
                 demonstrable regression of a pituitary mass in a case of  a preliminary study[J]. Ultrasonics, 2019, 99: 105951.
                 primary hypothyroidism after a week of acute thyroid hor-  [19] Mishra V, Rath S K. Detection of breast cancer tumours
                 mone therapy[J]. Journal of Clinical Endocrinology and  based on feature reduction and classification of thermo-
                 Metabolism, 1997, 82(3): 808–811.                 grams[J]. Quantitative Infrared Thermography Journal,
              [7] Acharya U R, Sree V S, Krishnan M R M, et al. Non-  2020: 1–14.
                 invasive automated 3D thyroid lesion classification in ul-  [20] Tsui P H, Wan Y L. Effects of fatty infiltration of the
                 trasound: a class of ThyroScan systems[J]. Ultrasonics,  liver on the Shannon entropy of ultrasound backscattered
                 2012, 52(4): 508–520.                             signals[J]. Entropy, 2016, 18(9): 341.
              [8] Tessler F N, Middleton W D, Grant E G, et al. ACR  [21] Tsui P H. Ultrasound detection of scatterer concen-
                 thyroid imaging, reporting and data system (TI-RADS):  tration by weighted entropy[J]. Entropy, 2015, 17(10):
                 white paper of the ACR TI-RADS committee[J]. Jour-  6598–6616.
                 nal of the American College of Radiology, 2017, 14(5):  [22] Ma H Y, Zhou Z, Wu S, et al. A computer-aided diagnosis
                 587–595.                                          scheme for detection of fatty liver in vivo based on ultra-
              [9] Xu H, Liu C, Yang P, et al. A nonlinear approach to  sound kurtosis imaging[J]. Journal of Medical Systems,
                 identify pathological change of thyroid nodules based on  2016, 40(1): 33.
                 statistical analysis of ultrasound RF signals[J]. Scientific  [23] Tsui P H, Huang C C, Chang C C, et al.  Feasibility
                 Reports, 2017, 7(1): 16930.                       study of using high-frequency ultrasonic Nakagami imag-
             [10] Rohrbach D, Smith J, Goundan P, et al.  Quantita-  ing for characterizing the cataract lens in vitro[J]. Physics
                 tive ultrasound-based detection of cancerous thyroid nod-  in Medicine and Biology, 2007, 52(21): 6413–6425.
                 ules[C]. 2018 IEEE International Ultrasonics Symposium  [24] Zhu L C, Ye Y L, Luo W H, et al. A model to discrimi-
                 (IUS), 2018: 1–9.                                 nate malignant from benign thyroid nodules using artifi-
             [11] Shi Y Z, Jin Y, Zheng L. Partially cystic thyroid nodules  cial neural network[J]. PLoS One, 2013, 8(12): e82211.
                 on ultrasound: the associated factors for malignancy[J].  [25] Hill T, Marquez L, O’Connor M, et al. Artificial neural
                 Clinical Hemorheology and Microcirculation, 2020, 74(4):  network models for forecasting and decision making[J].
                 373–381.                                          International Journal of Forcasting, 1994, 10(1): 5–15.
   58   59   60   61   62   63   64   65   66   67   68