Page 70 - 《应用声学》2021年第1期
P. 70

66                                                                                   2021 年 1 月


                                                                 [3] 中华人民共和国国家卫生健康委员会. 原发性肝癌诊疗规范
             3 总结与展望                                               (2019 年版)[EB/OL]. [2019–12–29]. http://www.nhc.gov.
                                                                   cn/yzygj/s7659/202001/6d24f85ff720482188c9dc22f20d16
                 本文对磁致振动超声成像的发展背景、成像原                              fa.shtml.
             理做了初步介绍,并从该成像技术所涉及的仪器平                              [4] 基于声辐射力的超声弹性成像设备性能试验方法: YY/T
                                                                   1480–2016[S].
             台、振动检测算法、磁纳米粒子和磁致振动超声弹                              [5] He X, Diao X, Lin H, et al. Using coded excitation to de-
             性成像等方面介绍其研究现状。磁致振动超声成像                                tect tissue vibration in ultrasonic elastography[J]. Journal
                                                                   of Medical Imaging and Health Informatics, 2017, 7(1):
             作为一种新兴的成像技术,国内外相关的研究并不
                                                                   217–223, 227.
             多,但其具有独特的优势和应用前景值得学者进一                              [6] Guo Y, Lin H, Dong C, et al. Role of acoustic radiation
             步重视和研究。首先,这是一种多物理场融合的成                                force impulse imaging elastography in the assessment of
                                                                   steatohepatitis and fibrosis in rat models[J]. Medical En-
             像方法。通过电磁激励 -超声检测的方法,有望突
                                                                   gineering & Physics, 2018, 59: 30–35.
             破单一物理场成像的局限性,并且更容易获取反映                              [7] Guo Y, Dong C, Lin H, et al. Ex vivo study of acoustic
             同一生理状态下的各种功能性信息,也是医学成像                                radiation force impulse imaging elastography for evalua-
                                                                   tion of rat liver with steatosis[J]. Ultrasonics, 2017, 74:
             技术发展的趋势和前沿。其次,随着磁纳米粒子在
                                                                   161–166.
             分子成像领域的不断开发和应用,该技术有望为超                              [8] Lin H, Zhang X, Shen Y, et al. Model-dependent and
             声分子成像提供新的检测途径。同时,也为磁纳米                                model-independent approaches for evaluating hepatic fi-
                                                                   brosis in rat liver using shearwave dispersion ultrasound
             粒子在超声成像领域的应用提供了广阔的空间。另
                                                                   vibrometry[J]. Medical Engineering & Physics, 2017, 39:
             外,该技术的应用进一步拓展了超声成像的功能性,                               66–72.
             并为发展具有结构成像、分子成像和弹性成像于一                              [9] Helfield B. A review of phospholipid encapsulated ultra-
                                                                   sound contrast agent microbubble physics[J]. Ultrasound
             体的超声成像系统提供新的思路。与 MRI 分子成
                                                                   in Medicine & Biology, 2018, 45(2): 282–300.
             像相比,磁致振动超声成像既有分子影像的灵敏性,                            [10] Opacic T, Dencks S, Theek B, et al. Motion model ultra-
             也有超高的成像速度,而且成像设备相对简单。与                                sound localization microscopy for preclinical and clinical
                                                                   multiparametric tumor characterization[J]. Nature Com-
             光声分子成像相比,磁致振动超声成像解决了光在
                                                                   munications, 2018, 9(1): 527–532.
             组织内传播的局限性。当然,磁致振动超声成像也                             [11] Errico C, Pierre J, Pezet S, et al. Ultrafast ultrasound
             面临众多问题需要进一步解决,包括仪器系统的完                                localization microscopy for deep super-resolution vascular
                                                                   imaging[J]. Nature, 2015, 527(7579): 499–502.
             善、弱信号的处理和提取、磁纳米粒子的优化和探
                                                                [12] Unnikrishnan S, Du Z, Diakova G, et al.  Formation
             针构建、在体实验以及安全性评估等方面。最后,磁                               of microbubbles for targeted ultrasound contrast imag-
             致振动超声成像作为多学科交叉的研究领域,还需                                ing:  practical translation considerations[J]. Langmuir,
                                                                   2018, 35(31): 10034–10041.
             要综合数学、物理、生物工程、材料科学、化学、生物
                                                                [13] Li B, Aid-Launais R, Labour M N, et al. Functional-
             等学科的参与和支持。随着磁致振动超声成像的不                                ized polymer microbubbles as new molecular ultrasound
             断研究和完善,相信该技术将在临床疾病诊断、术                                contrast agent to target P-selectin in thrombus[J]. Bioma-
                                                                   terials, 2018, 194: 139–150.
             中导航和疗效评估等方面发挥重要作用,并将推动                             [14] Willmann J K, Bonomo L, Testa A C, et al. Ultrasound
             相关基础科学研究的发展。                                          molecular imaging with BR55 in patients with breast and
                                                                   ovarian lesions: first-in-human results[J]. Journal of Clin-
                                                                   ical Oncology, 2017, 35(19): 2133–2140.
                            参 考     文   献                       [15] Toumia Y, Cerroni B, Domenici F, et al. Phase change
                                                                   ultrasound contrast agents with a photopolymerized di-
                                                                   acetylene shell[J]. Langmuir, 2019, 35(31): 10116–10127.
              [1] Guo R, Lu G, Qin B, et al. Ultrasound imaging tech-  [16] Wang L V. Photoacoustic imaging and spectroscopy[M].
                 nologies for breast cancer detection and management: a  Boca Raton: CRC Press, 2017.
                 review[J]. Ultrasound in Medicine & Biology, 2017, 44(1):  [17] Yang X, Stein E W, Ashkenazi S, et al. Nanoparticles
                 37–70.                                            for photoacoustic imaging[J]. Wiley Interdisciplinary Re-
              [2] Paolucci I, Schwalbe M, Prevost G A, et al. Intraopera-  views: Nanomedicine and Nanobiotechnology, 2009, 1(4):
                 tive ultrasound based navigation for laparoscopic ablation  360–368.
                 of liver tumors[J]. British Journal of Surgery, 2018, 105:  [18] Jiang Y, Pu K. Advanced photoacoustic imaging ap-
                 21–21.                                            plications of near‐infrared absorbing organic nanoparti-
   65   66   67   68   69   70   71   72   73   74   75