Page 70 - 《应用声学》2021年第1期
P. 70
66 2021 年 1 月
[3] 中华人民共和国国家卫生健康委员会. 原发性肝癌诊疗规范
3 总结与展望 (2019 年版)[EB/OL]. [2019–12–29]. http://www.nhc.gov.
cn/yzygj/s7659/202001/6d24f85ff720482188c9dc22f20d16
本文对磁致振动超声成像的发展背景、成像原 fa.shtml.
理做了初步介绍,并从该成像技术所涉及的仪器平 [4] 基于声辐射力的超声弹性成像设备性能试验方法: YY/T
1480–2016[S].
台、振动检测算法、磁纳米粒子和磁致振动超声弹 [5] He X, Diao X, Lin H, et al. Using coded excitation to de-
性成像等方面介绍其研究现状。磁致振动超声成像 tect tissue vibration in ultrasonic elastography[J]. Journal
of Medical Imaging and Health Informatics, 2017, 7(1):
作为一种新兴的成像技术,国内外相关的研究并不
217–223, 227.
多,但其具有独特的优势和应用前景值得学者进一 [6] Guo Y, Lin H, Dong C, et al. Role of acoustic radiation
步重视和研究。首先,这是一种多物理场融合的成 force impulse imaging elastography in the assessment of
steatohepatitis and fibrosis in rat models[J]. Medical En-
像方法。通过电磁激励 -超声检测的方法,有望突
gineering & Physics, 2018, 59: 30–35.
破单一物理场成像的局限性,并且更容易获取反映 [7] Guo Y, Dong C, Lin H, et al. Ex vivo study of acoustic
同一生理状态下的各种功能性信息,也是医学成像 radiation force impulse imaging elastography for evalua-
tion of rat liver with steatosis[J]. Ultrasonics, 2017, 74:
技术发展的趋势和前沿。其次,随着磁纳米粒子在
161–166.
分子成像领域的不断开发和应用,该技术有望为超 [8] Lin H, Zhang X, Shen Y, et al. Model-dependent and
声分子成像提供新的检测途径。同时,也为磁纳米 model-independent approaches for evaluating hepatic fi-
brosis in rat liver using shearwave dispersion ultrasound
粒子在超声成像领域的应用提供了广阔的空间。另
vibrometry[J]. Medical Engineering & Physics, 2017, 39:
外,该技术的应用进一步拓展了超声成像的功能性, 66–72.
并为发展具有结构成像、分子成像和弹性成像于一 [9] Helfield B. A review of phospholipid encapsulated ultra-
sound contrast agent microbubble physics[J]. Ultrasound
体的超声成像系统提供新的思路。与 MRI 分子成
in Medicine & Biology, 2018, 45(2): 282–300.
像相比,磁致振动超声成像既有分子影像的灵敏性, [10] Opacic T, Dencks S, Theek B, et al. Motion model ultra-
也有超高的成像速度,而且成像设备相对简单。与 sound localization microscopy for preclinical and clinical
multiparametric tumor characterization[J]. Nature Com-
光声分子成像相比,磁致振动超声成像解决了光在
munications, 2018, 9(1): 527–532.
组织内传播的局限性。当然,磁致振动超声成像也 [11] Errico C, Pierre J, Pezet S, et al. Ultrafast ultrasound
面临众多问题需要进一步解决,包括仪器系统的完 localization microscopy for deep super-resolution vascular
imaging[J]. Nature, 2015, 527(7579): 499–502.
善、弱信号的处理和提取、磁纳米粒子的优化和探
[12] Unnikrishnan S, Du Z, Diakova G, et al. Formation
针构建、在体实验以及安全性评估等方面。最后,磁 of microbubbles for targeted ultrasound contrast imag-
致振动超声成像作为多学科交叉的研究领域,还需 ing: practical translation considerations[J]. Langmuir,
2018, 35(31): 10034–10041.
要综合数学、物理、生物工程、材料科学、化学、生物
[13] Li B, Aid-Launais R, Labour M N, et al. Functional-
等学科的参与和支持。随着磁致振动超声成像的不 ized polymer microbubbles as new molecular ultrasound
断研究和完善,相信该技术将在临床疾病诊断、术 contrast agent to target P-selectin in thrombus[J]. Bioma-
terials, 2018, 194: 139–150.
中导航和疗效评估等方面发挥重要作用,并将推动 [14] Willmann J K, Bonomo L, Testa A C, et al. Ultrasound
相关基础科学研究的发展。 molecular imaging with BR55 in patients with breast and
ovarian lesions: first-in-human results[J]. Journal of Clin-
ical Oncology, 2017, 35(19): 2133–2140.
参 考 文 献 [15] Toumia Y, Cerroni B, Domenici F, et al. Phase change
ultrasound contrast agents with a photopolymerized di-
acetylene shell[J]. Langmuir, 2019, 35(31): 10116–10127.
[1] Guo R, Lu G, Qin B, et al. Ultrasound imaging tech- [16] Wang L V. Photoacoustic imaging and spectroscopy[M].
nologies for breast cancer detection and management: a Boca Raton: CRC Press, 2017.
review[J]. Ultrasound in Medicine & Biology, 2017, 44(1): [17] Yang X, Stein E W, Ashkenazi S, et al. Nanoparticles
37–70. for photoacoustic imaging[J]. Wiley Interdisciplinary Re-
[2] Paolucci I, Schwalbe M, Prevost G A, et al. Intraopera- views: Nanomedicine and Nanobiotechnology, 2009, 1(4):
tive ultrasound based navigation for laparoscopic ablation 360–368.
of liver tumors[J]. British Journal of Surgery, 2018, 105: [18] Jiang Y, Pu K. Advanced photoacoustic imaging ap-
21–21. plications of near‐infrared absorbing organic nanoparti-