Page 71 - 《应用声学》2021年第1期
P. 71
第 40 卷 第 1 期 齐亭亭等: 磁纳米粒子介导的磁致振动超声成像研究现状及展望 67
cles[J]. Small, 2017, 13(30): 1700710. [31] Ersepke T, Kranemann T C, Schmitz G. On the perfor-
[19] Li L, Zhu L, Ma C, et al. Single-impulse panoramic pho- mance of time domain displacement estimators for mag-
toacoustic computed tomography of small-animal whole- netomotive ultrasound imaging[J]. IEEE Transactions on
body dynamics at high spatiotemporal resolution[J]. Na- Ultrasonics Ferroelectrics and Frequency Control, 2019,
ture Biomedical Engineering, 2017, 1(5): 0071. 66(5): 911–921.
[20] Lin L, Hu P, Shi J, et al. Single-breath-hold photoacoustic [32] Shen W H, Li M L. Principle-component-analysis based
computed tomography of the breast[J]. Nature Communi- motion magnification for B-mode visualization of magne-
cations, 2018, 9(1): 2352. tomotive ultrasound[C]. In 2019 IEEE International Ul-
[21] Mehrmohammadi M, Oh J, Mallidi S, et al. Pulsed trasonics Symposium (IUS), 2019: 2166–2168.
magneto-motive ultrasound imaging using ultrasmall [33] Mehrmohammadi M, Yoon K Y, Qu M, et al. En-
magnetic nanoprobes[J]. Molecular Imaging, 2011, 10(2): hanced pulsed magneto-motive ultrasound imaging us-
102–110. ing superparamagnetic nanoclusters[J]. Nanotechnology,
2011, 22(4): 045502.
[22] Shin T H, Choi Y, Kim S, et al. Recent advances in mag-
[34] Mehrmohammadi M, Shin T H, Qu M, et al. In
netic nanoparticle-based multi-modal imaging[J]. Chemi-
vivo pulsed magneto-motive ultrasound imaging using
cal Society Reviews, 2015, 44(14): 4501–4516.
high-performance magnetoactive contrast nanoagents[J].
[23] 杜功焕, 朱哲民, 龚秀芬. 声学基础 [M]. 南京: 南京大学出版
Nanoscale, 2013, 5(22): 11179–11186.
社, 2012.
[35] Andersson R, Evertsson M, Toftevall H, et al. Effect
[24] Kasai C, Namekawa K, Koyano A, et al. Real-time two-
of nanoparticle size and magnetic field strength on the
dimensional blood flow imaging using an autocorrelation
displacement signal in magnetomotive ultrasound imag-
technique[J]. IEEE Transactions on Sonics & Ultrasonics,
ing[C]. Internaltional Ultrasonics Symposium, 2016: 1–4.
1985, 32(3): 458–464.
[36] Arsalani S, Arsalani S, Hadadian Y, et al. The effect of
[25] Loupas T, Powers J T, Gill R W. An axial velocity es-
magnetization of natural rubber latex coated magnetite
timator for ultrasound blood-flow imaging, based on a
nanoparticles on shear wave dispersion magneto-motive
full evaluation of the Doppler equation by means of a 2-
ultrasound[J]. Physics in Medicine and Biology, 2019,
dimensional autocorrelation approach[J]. IEEE Transac-
64(21): 215019.
tions on Ultrasonics, Ferroelectrics & Frequency Control,
[37] John R, Rezaeipoor R, Adie S G, et al. In vivo magneto-
1995, 42(4): 672–688.
motive optical molecular imaging using targeted magnetic
[26] Oh J, Feldman M D, Kim J, et al. Detection of mag-
nanoprobes[J]. Proceedings of the National Academy of
netic nanoparticles in tissue using magneto-motive ultra-
Sciences of the United States of America, 2010, 107(18):
sound[J]. Nanotechnology, 2006, 17(16): 4183–4190.
8085–8090.
[27] Oldenburg A L, Toublan F, Suslick K, et al. Magnetomo- [38] Li J, Arnal B, Wei C, et al. Magneto-optical nanoparticles
tive contrast for in vivo optical coherence tomography[J]. for cyclic magnetomotive photoacoustic imaging[J]. ACS
Optics Express, 2005, 13(17): 6597–6614. Nano, 2015, 9(2): 1964–1976.
[28] Grasland-Mongrain, P, Miller-Jolicoeur E, Tang A, et [39] Almeida T W J, Sampaio D R T, Bruno A C, et al. Com-
al. Contactless remote induction of shear waves in parison between shear wave dispersion magneto motive ul-
soft tissues using a transcranial magnetic stimulation de- trasound and transient elastography for measuring tissue-
vice[J]. Physics in Medicine & Biology, 2016, 61(6): 2582. mimicking phantom viscoelasticity[J]. IEEE Transactions
[29] Mehrmohammadi M, Oh J, Aglyamov S R, et al. Pulsed on Ultrasonics Ferroelectrics & Frequency Control, 2015,
magneto-acoustic imaging[J]. 2009, 2009: 4771–4774. 62(12): 2138–2145.
[30] Kaczkowski P J, Daigle R E. The Verasonics ultrasound [40] Grasland-Mongrain P, Miller-Jolicoeur E, Tang A, et
system as a pedagogic tool in teaching wave propagation, al. Contactless remote induction of shear waves in
scattering, beamforming, and signal processing concepts soft tissues using a transcranial magnetic stimulation
in physics and engineering[J]. The Journal of the Acous- device[J]. Physics in Medicine & Biology, 2016, 61(6):
tical Society of America, 2011, 129(4): 2648. 2582–2593.