Page 71 - 《应用声学》2021年第1期
P. 71

第 40 卷 第 1 期         齐亭亭等: 磁纳米粒子介导的磁致振动超声成像研究现状及展望                                           67


                 cles[J]. Small, 2017, 13(30): 1700710.         [31] Ersepke T, Kranemann T C, Schmitz G. On the perfor-
             [19] Li L, Zhu L, Ma C, et al. Single-impulse panoramic pho-  mance of time domain displacement estimators for mag-
                 toacoustic computed tomography of small-animal whole-  netomotive ultrasound imaging[J]. IEEE Transactions on
                 body dynamics at high spatiotemporal resolution[J]. Na-  Ultrasonics Ferroelectrics and Frequency Control, 2019,
                 ture Biomedical Engineering, 2017, 1(5): 0071.    66(5): 911–921.
             [20] Lin L, Hu P, Shi J, et al. Single-breath-hold photoacoustic  [32] Shen W H, Li M L. Principle-component-analysis based
                 computed tomography of the breast[J]. Nature Communi-  motion magnification for B-mode visualization of magne-
                 cations, 2018, 9(1): 2352.                        tomotive ultrasound[C]. In 2019 IEEE International Ul-
             [21] Mehrmohammadi M, Oh J, Mallidi S, et al.  Pulsed  trasonics Symposium (IUS), 2019: 2166–2168.
                 magneto-motive ultrasound imaging using ultrasmall  [33] Mehrmohammadi M, Yoon K Y, Qu M, et al.  En-
                 magnetic nanoprobes[J]. Molecular Imaging, 2011, 10(2):  hanced pulsed magneto-motive ultrasound imaging us-
                 102–110.                                          ing superparamagnetic nanoclusters[J]. Nanotechnology,
                                                                   2011, 22(4): 045502.
             [22] Shin T H, Choi Y, Kim S, et al. Recent advances in mag-
                                                                [34] Mehrmohammadi M, Shin T H, Qu M, et al.  In
                 netic nanoparticle-based multi-modal imaging[J]. Chemi-
                                                                   vivo pulsed magneto-motive ultrasound imaging using
                 cal Society Reviews, 2015, 44(14): 4501–4516.
                                                                   high-performance magnetoactive contrast nanoagents[J].
             [23] 杜功焕, 朱哲民, 龚秀芬. 声学基础 [M]. 南京: 南京大学出版
                                                                   Nanoscale, 2013, 5(22): 11179–11186.
                 社, 2012.
                                                                [35] Andersson R, Evertsson M, Toftevall H, et al.  Effect
             [24] Kasai C, Namekawa K, Koyano A, et al. Real-time two-
                                                                   of nanoparticle size and magnetic field strength on the
                 dimensional blood flow imaging using an autocorrelation
                                                                   displacement signal in magnetomotive ultrasound imag-
                 technique[J]. IEEE Transactions on Sonics & Ultrasonics,
                                                                   ing[C]. Internaltional Ultrasonics Symposium, 2016: 1–4.
                 1985, 32(3): 458–464.
                                                                [36] Arsalani S, Arsalani S, Hadadian Y, et al. The effect of
             [25] Loupas T, Powers J T, Gill R W. An axial velocity es-
                                                                   magnetization of natural rubber latex coated magnetite
                 timator for ultrasound blood-flow imaging, based on a
                                                                   nanoparticles on shear wave dispersion magneto-motive
                 full evaluation of the Doppler equation by means of a 2-
                                                                   ultrasound[J]. Physics in Medicine and Biology, 2019,
                 dimensional autocorrelation approach[J]. IEEE Transac-
                                                                   64(21): 215019.
                 tions on Ultrasonics, Ferroelectrics & Frequency Control,
                                                                [37] John R, Rezaeipoor R, Adie S G, et al. In vivo magneto-
                 1995, 42(4): 672–688.
                                                                   motive optical molecular imaging using targeted magnetic
             [26] Oh J, Feldman M D, Kim J, et al. Detection of mag-
                                                                   nanoprobes[J]. Proceedings of the National Academy of
                 netic nanoparticles in tissue using magneto-motive ultra-
                                                                   Sciences of the United States of America, 2010, 107(18):
                 sound[J]. Nanotechnology, 2006, 17(16): 4183–4190.
                                                                   8085–8090.
             [27] Oldenburg A L, Toublan F, Suslick K, et al. Magnetomo-  [38] Li J, Arnal B, Wei C, et al. Magneto-optical nanoparticles
                 tive contrast for in vivo optical coherence tomography[J].  for cyclic magnetomotive photoacoustic imaging[J]. ACS
                 Optics Express, 2005, 13(17): 6597–6614.          Nano, 2015, 9(2): 1964–1976.
             [28] Grasland-Mongrain, P, Miller-Jolicoeur E, Tang A, et  [39] Almeida T W J, Sampaio D R T, Bruno A C, et al. Com-
                 al.  Contactless remote induction of shear waves in  parison between shear wave dispersion magneto motive ul-
                 soft tissues using a transcranial magnetic stimulation de-  trasound and transient elastography for measuring tissue-
                 vice[J]. Physics in Medicine & Biology, 2016, 61(6): 2582.  mimicking phantom viscoelasticity[J]. IEEE Transactions
             [29] Mehrmohammadi M, Oh J, Aglyamov S R, et al. Pulsed  on Ultrasonics Ferroelectrics & Frequency Control, 2015,
                 magneto-acoustic imaging[J]. 2009, 2009: 4771–4774.  62(12): 2138–2145.
             [30] Kaczkowski P J, Daigle R E. The Verasonics ultrasound  [40] Grasland-Mongrain P, Miller-Jolicoeur E, Tang A, et
                 system as a pedagogic tool in teaching wave propagation,  al.  Contactless remote induction of shear waves in
                 scattering, beamforming, and signal processing concepts  soft tissues using a transcranial magnetic stimulation
                 in physics and engineering[J]. The Journal of the Acous-  device[J]. Physics in Medicine & Biology, 2016, 61(6):
                 tical Society of America, 2011, 129(4): 2648.     2582–2593.
   66   67   68   69   70   71   72   73   74   75   76