Page 92 - 《应用声学》2021年第1期
P. 92

88                                                                                   2021 年 1 月


                                                                   hepatic shear modulus in vivo using acoustic radiation
             4 结论                                                  force[J]. Ultrasound in Medicine & Biology, 2008, 34(4):
                                                                   546–558.
                 利用声辐射力对粒子和生物组织的无创、非接                           [11] Huang Y, Curiel L, Kukic A, et al. MR acoustic radiation
             触、多功能性等的操控是一项具有实际应用前景的                                force imaging: in vivo comparison to ultrasound motion
                                                                   tracking[J]. Medical Physics, 2009, 36(6): 2016–2020.
             技术,尤其是在弹性成像领域。分析操控需求,预测
                                                                [12] Walker W F, Fernandez F J, Negron L A. A model of
             相应的声辐射力大小和分布使其应用技术更高效、                                imaging viscoelastic parameters with acoustic radiation
             精确。数值模拟是计算声辐射力最直接和直观的方                                force[J]. Physics in Medicine and Biology, 2000, 45(6):
                                                                   1437–1447.
             法。而 k-Wave 可以用于复杂和真实组织介质中的
                                                                [13] 王彬, 李发琪. 声辐射力弹性成像: 弹性成像的新发展 [J]. 中
             时域声学和超声模拟,是模拟声辐射力的一种精确                                国医学影像技术, 2011, 27(4): 852–856.
             而有效的工具。它结合了有限差分法的简单性和在                                Wang Bin, Li Faqi. Acoustic radiation force elastography:
                                                                   the new development of elastography[J]. Chinese Journal
             任何非均匀介质中模拟的灵活性,具有快速、易用的
                                                                   of Medical Imaging Technology, 2011, 27(4): 852–856.
             特点。本文基于腹壁组织图像,利用k-Wave对超声                          [14] Prieur F, Sapozhnikov O A. Modeling of the acoustic ra-
             波在腹壁组织区域传播时的声场进行数值模拟,得                                diation force in elastography[J]. The Journal of the Acous-
                                                                   tical Society of America, 2017, 142(2): 947–961.
             到其声场和声辐射力的分布。对面阵换能器的阵元
                                                                [15] Prieur F, Treeby B, Catheline S. Simulation of shear wave
             宽度、间距、阵元个数以及工作频率等参量对声辐                                elastography imaging using the toolbox “k-Wave” [J]. The
             射力的影响进行了计算与分析,在声辐射力弹性成                                Journal of the Acoustical Society of America, 2016, 140(4):
                                                                   3418–3419.
             像中可以按实际需要进行选择和调整这些参量,使
                                                                [16] Treeby B E, Budisky J, Wise E S, et al. Rapid calcu-
             该弹性成像技术更加精确、高效。本文研究为声辐                                lation of acoustic fields from arbitrary continuous-wave
             射力在弹性成像技术中的应用奠定了基础,为实现                                sources[J]. The Journal of the Acoustical Society of Amer-
                                                                   ica, 2018, 143(1): 529–537.
             精密制造和精准医疗提供核心技术支持。
                                                                [17] Treeby B, Cox B, Jaros J. k-Wave: a MATLAB toolbox
                                                                   for the time domain simulation of acoustic wave fields[EB].
                            参 考     文   献
                                                                   http://www.k-wave.org/.
              [1] Ostrovsky L A. Radiation force in nonlinear, focused  [18] 李雅, 陈友兴, 任阳山, 等. 基于 k-wave 超声场时域仿真研
                 beams (L)[J]. The Journal of the Acoustical Society of  究 [J]. 电子技术应用, 2015, 41(11): 132–134, 139.
                 America, 2008, 124(3): 1404–1407.                 Li Ya, Chen Youxing, Ren Yangshan, et al. Based on the
              [2] Lord Rayleigh F R S. On the pressure of vibrations[J].  k-wave ulrasonic field in time domain simulation [J]. Ap-
                 Philosophical Magazine, 1902, 3(13–18): 338–346.  plication of Electronic Technique, 2015, 41(11): 132–134,
              [3] Sarvazyan A P, Rudenko O V, Nyborg W L. Biomedical  139.
                 applications of radiation force of ultrasound: historical  [19] Treeby B E, Jaros J, Rendell A P, et al.  Modeling
                 roots and physical basis[J]. Ultrasound in Medicine & Bi-  nonlinear ultrasound propagation in heterogeneous media
                 ology, 2010, 36(9): 1379–1394.                    with power law absorption using a k-space pseudospec-
              [4] Wu J R. Acoustical tweezers[J]. The Journal of the Acous-  tral method[J]. The Journal of the Acoustical Society of
                 tical Society of America, 1991, 89(5): 2140–2143.  America, 2012, 131(6): 4324–4336.
              [5] Lam K H, Li Y, Li Y, et al. Multifunctional single beam  [20] Glynne-Jones P, Mishra P P, Boltryk R J, et al. Efficient
                 acoustic tweezer for non-invasive cell/organism manipu-  finite element modeling of radiation forces on elastic par-
                 lation and tissue imaging[J]. Scientific Reports, 2016, 6:  ticles of arbitrary size and geometry[J]. The Journal of the
                 37554.                                            Acoustical Society of America, 2013, 133(4): 1885–1893.
              [6] Sundvik M, Nieminen H J, Salmi A, et al. Effects of acous-  [21] Li H, Wang Y, Ke M, et al.  Acoustic manipulating
                 tic levitation on the development of zebrafish, Danio rerio,  of capsule-shaped particle assisted by phononic crystal
                 embryos[J]. Scientific Reports, 2015, 5: 13596.    plate[J]. Applied Physics Letters, 2018, 112(22): 223501.
              [7] Shapira I, Oswald M, Lovecchio J, et al.  Circulating  [22] Mast D T, Hinkelman L M, Orr M J, et al. Simulation
                 biomarkers for detection of ovarian cancer and predict-  of ultrasonic pulse propagation through the abdominal
                 ing cancer outcomes[J]. British Journal of Cancer, 2014,  wall[J]. The Journal of the Acoustical Society of Amer-
                 110(4): 976–983.                                  ica, 1997, 102(2 Pt 1): 1177–1190.
              [8] Fatemi M, Greenleaf J F. Ultrasound-stimulated vibro-  [23] Qiao Y, Zhang X, Zhang G. Acoustic radiation force on
                 acoustic spectrography[J]. Science,  1998,  280(5360):  a fluid cylindrical particle immersed in water near an
                 82–85.                                            impedance boundary[J]. The Journal of the Acoustical So-
              [9] Sarvazyan A P, Rudenko O V, Swanson S D, et al. Shear  ciety of America, 2017, 141(6): 4633–4641.
                 wave elasticity imaging: a new ultrasonic technology of  [24] Zhang X, Song Z, Chen D, et al. Finite series expansion of
                 medical diagnostics[J]. Ultrasound in Medicine & Biology,  a Gaussian beam for the acoustic radiation force calcula-
                 1998, 24(9): 1419–1435.                           tion of cylindrical particles in water[J]. The Journal of the
             [10] Palmeri M L, Wang M H, Dahl J J, et al. Quantifying  Acoustical Society of America, 2015, 137(4): 1826–1833.
   87   88   89   90   91   92   93   94   95   96   97