Page 92 - 《应用声学》2021年第1期
P. 92
88 2021 年 1 月
hepatic shear modulus in vivo using acoustic radiation
4 结论 force[J]. Ultrasound in Medicine & Biology, 2008, 34(4):
546–558.
利用声辐射力对粒子和生物组织的无创、非接 [11] Huang Y, Curiel L, Kukic A, et al. MR acoustic radiation
触、多功能性等的操控是一项具有实际应用前景的 force imaging: in vivo comparison to ultrasound motion
tracking[J]. Medical Physics, 2009, 36(6): 2016–2020.
技术,尤其是在弹性成像领域。分析操控需求,预测
[12] Walker W F, Fernandez F J, Negron L A. A model of
相应的声辐射力大小和分布使其应用技术更高效、 imaging viscoelastic parameters with acoustic radiation
精确。数值模拟是计算声辐射力最直接和直观的方 force[J]. Physics in Medicine and Biology, 2000, 45(6):
1437–1447.
法。而 k-Wave 可以用于复杂和真实组织介质中的
[13] 王彬, 李发琪. 声辐射力弹性成像: 弹性成像的新发展 [J]. 中
时域声学和超声模拟,是模拟声辐射力的一种精确 国医学影像技术, 2011, 27(4): 852–856.
而有效的工具。它结合了有限差分法的简单性和在 Wang Bin, Li Faqi. Acoustic radiation force elastography:
the new development of elastography[J]. Chinese Journal
任何非均匀介质中模拟的灵活性,具有快速、易用的
of Medical Imaging Technology, 2011, 27(4): 852–856.
特点。本文基于腹壁组织图像,利用k-Wave对超声 [14] Prieur F, Sapozhnikov O A. Modeling of the acoustic ra-
波在腹壁组织区域传播时的声场进行数值模拟,得 diation force in elastography[J]. The Journal of the Acous-
tical Society of America, 2017, 142(2): 947–961.
到其声场和声辐射力的分布。对面阵换能器的阵元
[15] Prieur F, Treeby B, Catheline S. Simulation of shear wave
宽度、间距、阵元个数以及工作频率等参量对声辐 elastography imaging using the toolbox “k-Wave” [J]. The
射力的影响进行了计算与分析,在声辐射力弹性成 Journal of the Acoustical Society of America, 2016, 140(4):
3418–3419.
像中可以按实际需要进行选择和调整这些参量,使
[16] Treeby B E, Budisky J, Wise E S, et al. Rapid calcu-
该弹性成像技术更加精确、高效。本文研究为声辐 lation of acoustic fields from arbitrary continuous-wave
射力在弹性成像技术中的应用奠定了基础,为实现 sources[J]. The Journal of the Acoustical Society of Amer-
ica, 2018, 143(1): 529–537.
精密制造和精准医疗提供核心技术支持。
[17] Treeby B, Cox B, Jaros J. k-Wave: a MATLAB toolbox
for the time domain simulation of acoustic wave fields[EB].
参 考 文 献
http://www.k-wave.org/.
[1] Ostrovsky L A. Radiation force in nonlinear, focused [18] 李雅, 陈友兴, 任阳山, 等. 基于 k-wave 超声场时域仿真研
beams (L)[J]. The Journal of the Acoustical Society of 究 [J]. 电子技术应用, 2015, 41(11): 132–134, 139.
America, 2008, 124(3): 1404–1407. Li Ya, Chen Youxing, Ren Yangshan, et al. Based on the
[2] Lord Rayleigh F R S. On the pressure of vibrations[J]. k-wave ulrasonic field in time domain simulation [J]. Ap-
Philosophical Magazine, 1902, 3(13–18): 338–346. plication of Electronic Technique, 2015, 41(11): 132–134,
[3] Sarvazyan A P, Rudenko O V, Nyborg W L. Biomedical 139.
applications of radiation force of ultrasound: historical [19] Treeby B E, Jaros J, Rendell A P, et al. Modeling
roots and physical basis[J]. Ultrasound in Medicine & Bi- nonlinear ultrasound propagation in heterogeneous media
ology, 2010, 36(9): 1379–1394. with power law absorption using a k-space pseudospec-
[4] Wu J R. Acoustical tweezers[J]. The Journal of the Acous- tral method[J]. The Journal of the Acoustical Society of
tical Society of America, 1991, 89(5): 2140–2143. America, 2012, 131(6): 4324–4336.
[5] Lam K H, Li Y, Li Y, et al. Multifunctional single beam [20] Glynne-Jones P, Mishra P P, Boltryk R J, et al. Efficient
acoustic tweezer for non-invasive cell/organism manipu- finite element modeling of radiation forces on elastic par-
lation and tissue imaging[J]. Scientific Reports, 2016, 6: ticles of arbitrary size and geometry[J]. The Journal of the
37554. Acoustical Society of America, 2013, 133(4): 1885–1893.
[6] Sundvik M, Nieminen H J, Salmi A, et al. Effects of acous- [21] Li H, Wang Y, Ke M, et al. Acoustic manipulating
tic levitation on the development of zebrafish, Danio rerio, of capsule-shaped particle assisted by phononic crystal
embryos[J]. Scientific Reports, 2015, 5: 13596. plate[J]. Applied Physics Letters, 2018, 112(22): 223501.
[7] Shapira I, Oswald M, Lovecchio J, et al. Circulating [22] Mast D T, Hinkelman L M, Orr M J, et al. Simulation
biomarkers for detection of ovarian cancer and predict- of ultrasonic pulse propagation through the abdominal
ing cancer outcomes[J]. British Journal of Cancer, 2014, wall[J]. The Journal of the Acoustical Society of Amer-
110(4): 976–983. ica, 1997, 102(2 Pt 1): 1177–1190.
[8] Fatemi M, Greenleaf J F. Ultrasound-stimulated vibro- [23] Qiao Y, Zhang X, Zhang G. Acoustic radiation force on
acoustic spectrography[J]. Science, 1998, 280(5360): a fluid cylindrical particle immersed in water near an
82–85. impedance boundary[J]. The Journal of the Acoustical So-
[9] Sarvazyan A P, Rudenko O V, Swanson S D, et al. Shear ciety of America, 2017, 141(6): 4633–4641.
wave elasticity imaging: a new ultrasonic technology of [24] Zhang X, Song Z, Chen D, et al. Finite series expansion of
medical diagnostics[J]. Ultrasound in Medicine & Biology, a Gaussian beam for the acoustic radiation force calcula-
1998, 24(9): 1419–1435. tion of cylindrical particles in water[J]. The Journal of the
[10] Palmeri M L, Wang M H, Dahl J J, et al. Quantifying Acoustical Society of America, 2015, 137(4): 1826–1833.