Page 74 - 《应用声学》2021年第2期
P. 74
242 2021 年 3 月
[5] Maskay A, da Cunhaab M P. High-temperature static
3 结论 strain langasite SAWR sensor: temperature compensation
and numerical calibration for direct strain reading[J]. Sen-
本文提出一种桥型 SAW 应变传感器以提高应 sors & Actuators A: Physical, 2017, 259: 34–43.
变灵敏度。结合有限元法和微扰法对桥型 SAW 传 [6] Kalinin V, Leigh A, Nowell A, et al. Strain transfer and
感器不同几何参数下的应变灵敏度进行了分析, creep in all-quartz packaged SAW strain sensors[C]. Inter-
national Frequency Control Symposium, 2018.
结果表明立柱长度和高度对传感器的应变灵敏度 [7] Ren J, Anurakparadorn K, Gu H, et al. Design of
有较大的影响,而立柱宽度对应变灵敏度的影响 SAW sensor for longitudinal strain measurement with
较小。对几何尺寸为 L = 9 mm、W = 13 mm、 improved sensitivity[J]. Microsystem Technologies, 2019,
25(1): 351–359.
T = 0.35 mm、Ta = 0.03 mm 的桥型 SAW 传感器
[8] 马晓倩, 张红梅. 工程力学 [M]. 北京: 中国商务出版社, 2014.
与传统SAW传感器的应变灵敏度进行理论分析,并 [9] 李红浪, 高星, 柯亚兵, 等. 宽温度范围 SAW 应变传感器温度
设计实验对比研究了两种传感器的应变灵敏度。结 与应变解耦研究 [J]. 应用声学, 2018, 37(1): 16–19.
Li Honglang, Gao Xing, Ke Yabing, et al. Study on tem-
果表明,直梁构件受压弯曲时桥型 SAW 传感器的
perature and strain decoupling of SAW strain sensor in
应变灵敏度为 1692 Hz/µε,比传统 SAW 传感器应 wide temperature range[J]. Journal of Applied Acoustics,
变灵敏度提高了 27.41%,为 SAW 应变传感器的高 2018, 37(1): 16–19.
灵敏度受压弯曲应变测量提供新思路。 [10] Hempel J, Finke D, Steiert M, et al. SAW strain sensors-
high precision strain sensitivity investigation on chip-
level[C]. 2013 IEEE International Ultrasonics Symposium
参 考 文 献
(IUS), 2013, 3: 21–25.
[1] 郭霄鹏. 应用于燃气管道的声表面波应变传感器的研究 [D]. [11] Baumhauer J C, Tiersten H F. Nonlinear electroelastic
北京: 北京理工大学, 2016. equations for small fields superposed on a bias[J]. The
[2] 王延忠, 杨凯, 齐荣华, 等. 航空发动机叶轮超高周疲劳寿命 Journal of the Acoustical Society of America, 2005, 54(4):
预测方法 [J]. 浙江大学学报 (工学版), 2019, 53(4): 621–627, 1017–1034.
637. [12] 黎璇, 王文, 黄杨青, 等. 声表面波梁式加速度传感器的优化
Wang Yanzhong, Yang Kai, Qi Ronghua, et al. Ultra- 设计 [J]. 应用声学, 2016, 35(4): 343–350.
high cycle fatigue life prediction method for aero engine Li Xuan, Wang Wen, Huang Yangqing, et al. Optimiza-
impeller[J]. Journal of Zhejiang University (Engineering tion design of SAW beam acceleration sensor[J]. Journal
Science), 2019, 53(4): 621–627, 637. of Applied Acoustics, 2016, 35(4): 343–350.
[3] Bao Z, Hara M, Mitsui M, et al. Experimental study of [13] 杨瑞, 孙霞阳, 杨胜兵, 等. 基于压电陶瓷的等变厚度悬臂梁
highly sensitive sensor using a surface acoustic wave res- 特性研究 [J]. 压电与声光, 2020, 42(1): 57–61, 70.
onator for wireless strain detection[J]. Japanese Journal Yang Rui, Sun Xiayang, Yang Shengbing, et al. Research
of Applied Physics, 2012, 51(7): 07GC23. on characteristics of uniform and variable thickness can-
[4] Oh H, Lee K, Eun K, et al. Development of a high- tilever beam based on piezoelectric ceramics[J]. Piezoelec-
sensitivity strain measurement system based on a SH SAW tric and Acoustooptics, 2020, 42(1): 57–61, 70.
sensor[J]. Journal of Micromechanics and Microengineer- [14] 高星. 宽温度范围声表面波应变传感器研究 [D]. 北京: 中国
ing, 2012, 22(2): 025002. 科学院大学, 2017.