Page 122 - 《应用声学》2022年第1期
P. 122

118                                                                                  2022 年 1 月


             于该算法进行有针对性的样本设计,实现不同灵敏                                medical ultrasound images based on wavelet and bilat-
             度要求下的图像降噪。                                            eral filter[J]. Journal of Image and Graphics, 2014, 19(1):
                                                                   126–132.
                                                                [12] Jain V, Seung S. Natural image denoising with convolu-
                                                                   tional networks[A]//Advances in Neural Information Pro-
                            参 考     文   献
                                                                   cessing Systems, 2009: 769–776.
                                                                [13] Burger H C, Schuler C J, Harmeling S. Image denoising:
              [1] 刘长福, 张彦新, 李中伟, 等. 超声波相控阵技术原理及特                   can plain neural networks compete with BM3D?[A]//2012
                 点 [J]. 河北电力技术, 2008, 27(3): 29–31.                IEEE Conference on Computer Vision and Pattern Recog-
                 Liu Changfu, Zhang Yanxin, Li Zhongwei, et al. the-  nition. IEEE, 2012: 2392–2399.
                 ory and features of ultrasonic phased array technology[J].  [14] Mao X, Shen C, Yang Y B. Image restoration using very
                 Hebei Electric Power, 2008, 27(3): 29–31.         deep convolutional encoder-decoder networks with sym-
              [2] 李衍. 超声相控阵技术 [J]. 无损探伤, 2007, 31(4): 24–28.       metric skip connections[A]//Advances in neural informa-
              [3] Dean D S. A review of ultrasonic transducer arrays[J].  tion processing systems, 2016: 2802–2810.
                 British Journal of Non-Destructive Testing, 1979, 21(3):  [15] Zhang K, Zuo W, Chen Y, et al. Beyond a gaussian de-
                 140–144.                                          noiser: residual learning of deep cnn for image denois-
              [4] 朱秀昌, 刘峰, 胡栋. 数字图像处理与图像通信 [M]. 北京: 北              ing[J]. IEEE Transactions on Image Processing, IEEE,
                 京邮电大学出版社, 2002: 45.                               2017, 26(7): 3142–3155.
              [5] Gonzales R C, Woods R E. Digital image processing[M].  [16] 张侃, 杨力, 王学权, 等. 超声相控阵技术的发展及其在核工
                 New Jersey: Prentice Hall, 2002.                  程无损检测中的应用 [J]. 无损检测, 2017, 39(5): 42–48.
              [6] Pratt W K, Wiley J. A Wiley-Interscience publica-  Zhang Kan, Yang Li, Wang Xuequan, et al. Development
                 tion[A]//Digital Image Processing. Citeseer, 1978.  of ultrasonic phased array technology and applications in
              [7] Deng G, Cahill L W. An adaptive Gaussian filter for noise  nondestructive testing of nuclear engineering[J]. Nonde-
                 reduction and edge detection[A]//1993 IEEe Conference  structive Testing, 2017, 39(5): 42–48.
                 Record Nuclear Science Symposium and Medical Imaging  [17] 李锦, 林书玉. 平面相控阵的尺寸对声波聚焦效果的影响 [J].
                 Conference. IEEE, 1993: 1615–1619.                应用声学, 2004, 23(3): 23–28.
              [8] Tomasi C, Manduchi R. Bilateral filtering for gray and  Li Jin, Lin Shuyu. Influence of phased array element size
                 color images[A]//Sixth International Conference on Com-  on beam focusing behavior[J[. Applied Acoustics, 2004,
                 puter Vision (IEEE Cat. No. 98CH36271). IEEE, 1998:  23(3): 23–28.
                 839–846.                                       [18] 万敏, 王海涛, 程继隆, 等. 超声相控阵声束控制特性分析 [J].
              [9] Buades A, Coll B, Morel J M. A non-local algorithm  无损检测, 2009, 31(11): 859–861, 867.
                 for image denoising[A]//2005 IEEE Computer Society  Wan Min, Wang Haitao, Cheng Jilong, et al. The analy-
                 Conference on Computer Vision and Pattern Recognition  sis on the features of the propagating waves control of the
                 (CVPR’05). IEEE, 2005, 2: 60–65.                  ultrasonic phased array[J]. Nondestructive Testing, 2009,
             [10] Dabov K, Foi A, Katkovnik V, et al.  Image denois-  31(11): 859–861, 867.
                 ing by sparse 3-D transform-domain collaborative filter-  [19] 李刚. 超声相控阵检测扇形扫描成像研究 [D]. 西安: 西安科
                 ing[J]. IEEE Transactions on Image Processing, IEEE,  技大学, 2019.
                 2007, 16(8): 2080–2095.                        [20] He K, Zhang X, Ren S, et al. Deep residual learning for
             [11] 张聚, 王陈, 程芸. 小波与双边滤波的医学超声图像去噪 [J].                image recognition[A]//Proceedings of the IEEE Confer-
                 中国图象图形学报, 2014, 19(1): 126–132.                   ence on Computer Vision and Pattern Recognition, 2016:
                 Zhang Ju, Wang Chen, Cheng Yun.  Despecking for   770–778.
   117   118   119   120   121   122   123   124   125   126   127