Page 23 - 《应该声学》2022年第2期
P. 23
第 41 卷 第 2 期 全飞熊等: 复合声子结构的声场模拟及噪声 -压电转化设计 191
[2] 王康, 王鹏, 麻乘榕, 等. 噪声对单耳语言可懂度的影响 [J]. 声 [17] Champoux Y, Allard J F. Dynamic tortuosity and bulk
学学报, 2016, 41(5): 776–783. modulus in air-saturated porous media[J]. Journal of Ap-
Wang Kang, Wang Peng, Ma Chengrong, et al. Effect of plied Physics, 1991, 70(4): 1975–1979.
noise on speech intelligibility in monaural hearing[J]. Acta [18] Koizumi T, Tsujiuchi N, Adachi A. The development
Acustica, 2016, 41(5): 776–783. of sound absorbing materials using natural bamboo
[3] 冯俊明, 杨琼华, 梁之安. 强噪声等环境因素对人听觉功能的 fibers[M]//High performance structures and composites.
影响 [J]. 声学学报, 1980, 17(3): 183–191. UK: WIT Press, 2002.
Feng Junming, Yang Qionghua, Liang Zhi’an. Effects of [19] Nor M J M, Ayub M, Zulkifli R, et al. Effect of different
intensive noise and other environmental factors on hu- factors on the acoustic absorption of coir fiber[J]. Jour-
man auditory functions[J]. Acta Acustica, 1980, 17(3): nal of Applied Sciences, 2010, 10(22): 2887–2892.
183–191. [20] Swift M J, Bris P, Horoshenkov K V. Acoustic absorption
[4] 张鹤丰, 叶兴南, 成天涛, 等. 中国地区农作物秸秆燃烧排放 in re-cycled rubber granulate[J]. Applied Acoustics, 1999,
大气污染物模拟及 GIS 分析 [C]//中国化学会第 26 届学术年 57(3): 203–212.
会环境化学分会场论文集, 2008: 158. [21] Khan A. Vibro-acoustic products from re-cycled raw ma-
[5] Assouar B, Liang B, Wu Y, et al. Acoustic metasur- terials using a cold extrusion process: a continuous cold
faces[J]. Nature Reviews Materials, 2018, 3: 460–472. extrusion process[D] Bradford: University of Bradford,
[6] Li Y, Shen C, Xie Y, et al. Tunable asymmetric transmis- 2008.
sion via lossy acoustic metasurfaces[J]. Physical Review [22] Maderuelo-Sanz R, Barrigón Morillas J M, Martín-Castizo
Letters, 2017, 119(3): 035501. M, et al. Acoustical performance of porous absorber made
[7] Zhang Z, Cheng C, Yu S, et al. Electrically tunable from recycled rubber and polyurethane resin[J]. Latin
elastic topological insulators using atomically thin two- American Journal of Solids and Structures, 2013, 10(3):
dimensional materials pinned on patterned substrates[J]. 585–600.
Physical Review Applied, 2021, 15: 034015. [23] 陈长红, 田苗, 赵炜. 嵌入压电基底蜂窝状声子晶体声表面波
[8] Qi S, Oudich M, Li Y, et al. Acoustic energy harvest- 带隙特性 [J]. 声学学报, 2021, 46(2): 255–262.
ing based on a planar acoustic metamaterial[J]. Applied Chen Changhong, Tian Miao, Zhao Wei. Properties of
Physics Letters, 2016, 108(26): 114905. surface acoustic wave band gaps in honeycomb phononic
[9] 吴万鹏. 基于 COMSOL 的声子晶体能带结构计算方法 [D]. crystal embedded with piezoelectric substrate[J]. Acta
天津: 天津科技大学, 2017. Acustica, 2021, 46(2): 255–262.
[10] 侯振民, 舒珺, 林蔚骁. 基于生物质回收的自供能保暖鞋垫 [J]. [24] Cox T J, D’Antonio P. Acoustic absorbers and diffusers:
节能, 2020, 39(9): 85–87. theory, design and application[M]. 3rd ed. New York:
[11] 张海兵. 柔性压电复合材料的研究进展 [J]. 浙江化工, 2019, Taylor and Francis, 2017.
50(5): 1–4. [25] 王军, 孟念湘, 郭旭芳, 等. 温度对 PVDF 压电膜的影响 [C]//
Zhang Haibing. Research progress of flexible piezoelectric 中国工程物理研究院科技年报 (2001), 2001: 224–225.
composites[J]. Zhejiang Chemical Industry, 2019, 50(5): [26] Wang X, Fang X, Mao D, et al. Extremely asymmetrical
1–4. acoustic metasurface mirror at the exceptional point[J].
[12] 骆懿, 于洋, 廖家明, 等. 高压静电纺丝工艺制备 PVDF- Physical Review Letters, 2019, 123(21): 214302.
ZnO/GR 共聚物膜的压电性能研究 [J]. 传感技术学报, 2019, [27] 梁孝东, 缪林昌, 尤佺, 等. 局域共振二维声子晶体的低频带
32(6): 815–821. 隙特性研究 [J]. 人工晶体学报, 2019, 48(7): 1225–1232.
Luo Yi, Yu Yang, Liao Jiaming, et al. Piezoelectric prop- Liang Xiaodong, Miao Linchang, You Quan, et al. Low-
erties of PVDF-ZnO /GR copolymer films prepared by frequency band gap characteristics of locally resonant
high voltage electrospinning[J]. Chinese Journal of Sen- two-dimentional phononic crystal[J]. Journal of Synthetic
sors and Actuators, 2019, 32(6): 815–821. Crystals, 2019, 48(7): 1225–1232.
[13] 骆懿, 梅开煌. 基于柔性基底的压电能量收集器的设计 [J]. 传 [28] 赵胜东. 单相固体声子晶体与可调超表面的声波调控 [D]. 北
感技术学报, 2017, 30(8): 1293–1298. 京: 北京交通大学, 2018.
Luo Yi, Mei Kaihuang. Design of piezoelectric energy col- [29] 王兴国, 舒海生, 张靓, 等. 径向声子晶体隔声特性 [J]. 应用
lector based on flexible substrate[J]. Chinese Journal of 声学, 2019, 38(1): 120–128.
Sensors and Actuators, 2017, 30(8): 1293–1298. Wang Xingguo, Shu Haisheng, Zhang Liang, et al. Acous-
[14] Mamtaz H, Fouladi M H, Nuawi M Z, et al. Acous- tic insulation properties of radial phononic crystals[J].
tic absorption of fibro-granular composite with cylindrical Journal of Applied Acoustics, 2019, 38(1): 120–128.
grains[J]. Applied Acoustics, 2017, 126: 58–67. [30] 李玉良. 三维声学超材料的结构设计与实验研究 [D]. 哈尔滨:
[15] Yu D, Wang G, Liu Y, et al. Flexural vibration band gaps 哈尔滨工业大学, 2018.
in Timoshenko beams with locally resonant structures[J]. [31] 贺子厚, 赵静波, 姚宏, 等. 薄膜底面 Helmholtz 腔声学超材
Journal of Applied Physics, 2006, 100: 124901. 料的隔声性能 [J]. 物理学报, 2019, 68(21): 148–159.
[16] Halkjaer S, Sigmund O, Jensen J S. Maximizing band gaps He Zihou, Zhao Jingbo, Yao Hong, et al. Sound insulation
in plate structures[J]. Structural and Multidisciplinary performance of Helmholtz cavity with thin film bottom[J].
Optimization, 2006, 32(4): 263–275. Acta Physica Sinica, 2019, 68(21): 148–159.