Page 178 - 《应用声学》2022年第3期
P. 178
500 2022 年 5 月
[9] 吴妍, 费春龙, 杨新宇, 等. 聚焦超声换能器的研究现状与发
4 结论与展望 展 [J]. 压电与声光, 2019, 41(6): 904–909.
Wu Yan, Fei Chunlong, Yang Xinyu, et al. Research sta-
随着超声检测需求的不断提高和科学技术的 tus and development of focused ultrasonic transducer[J].
发展,对超声换能器性能提出了更高的要求,因此研 Piezoelectric & Acoustooptic, 2019, 41(6): 904–909.
[10] Szabo T L. Diagnostic ultrasound imaging: inside out[M].
究和改进无源声学材料 (匹配层、背衬层及声透镜)
Salt Lake City: Academic Press, 2004.
具有重要意义。目前无源声学材料的主流研究思路 [11] Desilets C S, Fraser J D, Kino G S. The design of efficient
是陶瓷、金属粉体填充有机物制备复合材料,通过 broad-band piezoelectric transducers[J]. IEEE Transac-
调整微观结构及其组分来实现声学性能的优化。此 tions on Sonics and Ultrasonics, 1978, 25(3): 115–125.
[12] Shung K K, Cannata J M, Zhou Q F, et al. P3Q-
外,基于增材制造(3D打印)技术和微纳加工技术制
4 nanocomposite matching layers for high frequency ul-
备的声学超材料以其特异的物理性能受到广泛关 trasound transducers[C]//2006 IEEE Ultrasonics Sympo-
注。声学超材料的发展将为换能器无源声学材料的 sium, 2006: 2365–2368.
[13] 吴樵, 陈秋颖, 王小民, 等. 空心聚合物微珠/环氧树脂复合
优化提供新的思路。
材料匹配层空耦式压电换能器 [J]. 声学学报, 2019, 44(4):
735–742.
Wu Qiao, Chen Qiuying, Wang Xiaomin, et al. An air-
参 考 文 献 coupled piezoelectric transducer with a hollow polymer
microsphere filled epoxy resin matching layer [J]. Acta
[1] Hauptmann P, Hoppe N, Püttmer A. Application of ul- Acustica, 2019, 44(4): 735–742.
trasonic sensors in the process industry[J]. Measurement [14] Devaney A J, Levine H. Effective elastic parrameters
Science and Technology, 2002, 13(8): R73. of random composites[J]. Applied Physics Letter, 1980,
[2] Deng L L, O’Reilly M A, Jones R M, et al. A multi- 37(4): 377–379.
frequency sparse hemispherical ultrasound phased array [15] 刘鹏波, 简小华, 韩志乐, 等. 高频医用超声换能器材料声匹
for microbubble-mediated transcranial therapy and simul- 配特性研究 [J]. 压电与声光, 2016, 38(3): 450–453.
taneous cavitation mapping[J]. Physics in Medicine & Bi- Liu Pengbo, Jian Xiaohua, Han Zhile, et al. Study on
ology, 2016, 61(24): 8476. the acoustic matching properties of high frequency med-
[3] Kim I D, Choi S S, Lee H, et al. Equivalent circuit mod- ical ultrasound transducers materials[J]. Piezoelectric &
elling of FFR transducer array for sonar system design[J]. Acoustooptic, 2016, 38(3): 450–453.
The Transactions of the Korean Institute of Electrical En- [16] Toda M, Thompson M. Novel multi-layer polymer-metal
gineers, 2017, 66(4): 629–635.
structures for use in ultrasonic transducer impedance
[4] 吴大伟. 高频超声换能器技术研究进展与展望 [J]. 振动、测试 matching and backing absorber applications[J]. IEEE
与诊断, 2017, 37(1): 1–12. Transactions on Ultrasonics, Ferroelectrics, and Fre-
Wu Dawei. Progress and prospects of high-frequency ul- quency Control, 2010, 57(12): 2818–2827.
trasonic transducer techniques [J]. Journal of Vibration,
[17] Gorostiaga M, Wapler M C, Wallrabe U. Novel spring-
Measurement & Diagnosis, 2017, 37(1): 1–12.
mass matching layer fabrication[C]//2015 IEEE Interna-
[5] 张跃强, 张早校, 郝建成, 等. 管道超声导波检测技术进展 [J].
tional Ultrasonics Symposium Proceedings, 2015: 1–4.
化工设备与管道, 2016, 53(3): 72–75.
[18] Liu D X, Yue Q W, Deng J, et al. Broadband and high
Zhang Yueqiang, Zhang Zaoxiao, Hao Jiancheng, et al.
sensitive time-of-flight diffraction ultrasonic transducers
Development of ultrasonic guided wave technique used in
based on PMNT/Epoxy 1–3 piezoelectric composite[J].
pipeline inspection[J]. Process Equipment & Piping, 2016,
Sensors, 2015, 15(3): 6807–6817.
53(3): 72–75.
[19] Lau S T, Li H, Wong K S, et al. Multiple matching scheme
[6] 王君琳, 孟晓辉, 肖灵. 超声内镜换能器的应用进展 [J]. 应用
声学, 2013, 32(4): 271–276. for broadband 0.72Pb(Mg 1/3 Nb 2/3 )O 3 -0.28PbTiO 3 sin-
gle crystal phased-array transducer[J]. Journal of Applied
Wang Junlin, Meng Xiaohui, Xiao Ling. Progress in ap-
Physics, 2009, 105(9): 094908.
plication of endoscopic ultrasound transducers[J]. Journal
of Applied Acoustics, 2013, 32(4): 271–276. [20] Li Z, Yang D Q, Liu S L, et al. Broadband gradient
[7] Cheung K F, Zhou D, Lam K H, et al. Performance en- impedance matching using an acoustic metamaterial for
hancement of a piezoelectric linear array transducer by ultrasonic transducers[J]. Scientific Reports, 2017, 7(1):
half-concave geometric design[J]. Sensors and Actuators 1–9.
A: Physical, 2011, 172(2): 511–515. [21] Guillermic R M, Lanoy M, Strybulevych A, et al. A
[8] Chen Y C, Wu S. Multiple acoustical matching layer de- PDMS-based broadband acoustic impedance matched ma-
sign of ultrasonic transducer for medical application[J]. terial for underwater applications[J]. Ultrasonics, 2019,
Japanese Journal of Applied Physics, 2002, 41(10R): 6098. 94: 152–157.