Page 178 - 《应用声学》2022年第3期
P. 178

500                                                                                  2022 年 5 月


                                                                 [9] 吴妍, 费春龙, 杨新宇, 等. 聚焦超声换能器的研究现状与发
             4 结论与展望                                               展 [J]. 压电与声光, 2019, 41(6): 904–909.
                                                                   Wu Yan, Fei Chunlong, Yang Xinyu, et al. Research sta-
                 随着超声检测需求的不断提高和科学技术的                               tus and development of focused ultrasonic transducer[J].
             发展,对超声换能器性能提出了更高的要求,因此研                               Piezoelectric & Acoustooptic, 2019, 41(6): 904–909.
                                                                [10] Szabo T L. Diagnostic ultrasound imaging: inside out[M].
             究和改进无源声学材料 (匹配层、背衬层及声透镜)
                                                                   Salt Lake City: Academic Press, 2004.
             具有重要意义。目前无源声学材料的主流研究思路                             [11] Desilets C S, Fraser J D, Kino G S. The design of efficient
             是陶瓷、金属粉体填充有机物制备复合材料,通过                                broad-band piezoelectric transducers[J]. IEEE Transac-
             调整微观结构及其组分来实现声学性能的优化。此                                tions on Sonics and Ultrasonics, 1978, 25(3): 115–125.
                                                                [12] Shung K K, Cannata J M, Zhou Q F, et al.  P3Q-
             外,基于增材制造(3D打印)技术和微纳加工技术制
                                                                   4 nanocomposite matching layers for high frequency ul-
             备的声学超材料以其特异的物理性能受到广泛关                                 trasound transducers[C]//2006 IEEE Ultrasonics Sympo-
             注。声学超材料的发展将为换能器无源声学材料的                                sium, 2006: 2365–2368.
                                                                [13] 吴樵, 陈秋颖, 王小民, 等. 空心聚合物微珠/环氧树脂复合
             优化提供新的思路。
                                                                   材料匹配层空耦式压电换能器 [J]. 声学学报, 2019, 44(4):
                                                                   735–742.
                                                                   Wu Qiao, Chen Qiuying, Wang Xiaomin, et al. An air-
                            参 考     文   献                          coupled piezoelectric transducer with a hollow polymer
                                                                   microsphere filled epoxy resin matching layer [J]. Acta
              [1] Hauptmann P, Hoppe N, Püttmer A. Application of ul-  Acustica, 2019, 44(4): 735–742.
                 trasonic sensors in the process industry[J]. Measurement  [14] Devaney A J, Levine H. Effective elastic parrameters
                 Science and Technology, 2002, 13(8): R73.         of random composites[J]. Applied Physics Letter, 1980,
              [2] Deng L L, O’Reilly M A, Jones R M, et al. A multi-  37(4): 377–379.
                 frequency sparse hemispherical ultrasound phased array  [15] 刘鹏波, 简小华, 韩志乐, 等. 高频医用超声换能器材料声匹
                 for microbubble-mediated transcranial therapy and simul-  配特性研究 [J]. 压电与声光, 2016, 38(3): 450–453.
                 taneous cavitation mapping[J]. Physics in Medicine & Bi-  Liu Pengbo, Jian Xiaohua, Han Zhile, et al. Study on
                 ology, 2016, 61(24): 8476.                        the acoustic matching properties of high frequency med-
              [3] Kim I D, Choi S S, Lee H, et al. Equivalent circuit mod-  ical ultrasound transducers materials[J]. Piezoelectric &
                 elling of FFR transducer array for sonar system design[J].  Acoustooptic, 2016, 38(3): 450–453.
                 The Transactions of the Korean Institute of Electrical En-  [16] Toda M, Thompson M. Novel multi-layer polymer-metal
                 gineers, 2017, 66(4): 629–635.
                                                                   structures for use in ultrasonic transducer impedance
              [4] 吴大伟. 高频超声换能器技术研究进展与展望 [J]. 振动、测试                 matching and backing absorber applications[J]. IEEE
                 与诊断, 2017, 37(1): 1–12.                           Transactions on Ultrasonics, Ferroelectrics, and Fre-
                 Wu Dawei. Progress and prospects of high-frequency ul-  quency Control, 2010, 57(12): 2818–2827.
                 trasonic transducer techniques [J]. Journal of Vibration,
                                                                [17] Gorostiaga M, Wapler M C, Wallrabe U. Novel spring-
                 Measurement & Diagnosis, 2017, 37(1): 1–12.
                                                                   mass matching layer fabrication[C]//2015 IEEE Interna-
              [5] 张跃强, 张早校, 郝建成, 等. 管道超声导波检测技术进展 [J].
                                                                   tional Ultrasonics Symposium Proceedings, 2015: 1–4.
                 化工设备与管道, 2016, 53(3): 72–75.
                                                                [18] Liu D X, Yue Q W, Deng J, et al. Broadband and high
                 Zhang Yueqiang, Zhang Zaoxiao, Hao Jiancheng, et al.
                                                                   sensitive time-of-flight diffraction ultrasonic transducers
                 Development of ultrasonic guided wave technique used in
                                                                   based on PMNT/Epoxy 1–3 piezoelectric composite[J].
                 pipeline inspection[J]. Process Equipment & Piping, 2016,
                                                                   Sensors, 2015, 15(3): 6807–6817.
                 53(3): 72–75.
                                                                [19] Lau S T, Li H, Wong K S, et al. Multiple matching scheme
              [6] 王君琳, 孟晓辉, 肖灵. 超声内镜换能器的应用进展 [J]. 应用
                 声学, 2013, 32(4): 271–276.                         for broadband 0.72Pb(Mg 1/3 Nb 2/3 )O 3 -0.28PbTiO 3 sin-
                                                                   gle crystal phased-array transducer[J]. Journal of Applied
                 Wang Junlin, Meng Xiaohui, Xiao Ling. Progress in ap-
                                                                   Physics, 2009, 105(9): 094908.
                 plication of endoscopic ultrasound transducers[J]. Journal
                 of Applied Acoustics, 2013, 32(4): 271–276.    [20] Li Z, Yang D Q, Liu S L, et al.  Broadband gradient
              [7] Cheung K F, Zhou D, Lam K H, et al. Performance en-  impedance matching using an acoustic metamaterial for
                 hancement of a piezoelectric linear array transducer by  ultrasonic transducers[J]. Scientific Reports, 2017, 7(1):
                 half-concave geometric design[J]. Sensors and Actuators  1–9.
                 A: Physical, 2011, 172(2): 511–515.            [21] Guillermic R M, Lanoy M, Strybulevych A, et al.  A
              [8] Chen Y C, Wu S. Multiple acoustical matching layer de-  PDMS-based broadband acoustic impedance matched ma-
                 sign of ultrasonic transducer for medical application[J].  terial for underwater applications[J]. Ultrasonics, 2019,
                 Japanese Journal of Applied Physics, 2002, 41(10R): 6098.  94: 152–157.
   173   174   175   176   177   178   179   180   181   182