Page 180 - 《应用声学》2022年第3期
P. 180

502                                                                                  2022 年 5 月


             [49] Hejazi M M, Jadidian B, Safari A. Fabrication and evalua-  [58] Welter J T, Sathish S, Dierken J M, et al. Broadband
                 tion of a single-element Bi 0.5 Na 0.5 TiO 3 -based ultrasonic  aperiodic air coupled ultrasonic lens[J]. Applied Physics
                 transducer[J]. IEEE Transactions on Ultrasonics, Ferro-  Letters, 2012, 100(21): 214102.
                 electrics, and Frequency Control, 2012, 59(8): 1840–1847.  [59] Kanno Y, Tsuruta K, Fujimori K, et al. Phononic-crystal
             [50] Feng G H, Lin Z D. Micromachined flexible diaphragm  acoustic lens by design for energy-transmission devices[J].
                 backed PZT ultrasonic transducer with a controllable self-  Electronics and Communications in Japan, 2014, 97(1):
                 focused acoustic beam[J]. Measurement Science and Tech-  22–27.
                 nology, 2011, 22(12): 125204.                  [60] Al Jahdali R, Wu Y. High transmission acoustic focusing
             [51] Peng X J, Peng J, Tang H, et al. Ultrahigh frequency mi-  by impedance-matched acoustic meta-surfaces[J]. Applied
                 cromachined ultrasound transducers based on piezoelec-  Physics Letters, 2016, 108(3): 031902.
                 tric single crystalline wafers[J]. Journal of Medical Imag-  [61] Lopes J H, Andrade M A B, Leao-Neto J P, et al. Fo-
                 ing and Health Informatics, 2015, 5(2): 374–377.
                                                                   cusing acoustic beams with a ball-shaped lens beyond the
             [52] Cabrera-Munoz N E, Eliahoo P, Wodnicki R, et
                                                                   diffraction limit[J]. Physical Review Applied, 2017, 8(2):
                 al.  Fabrication and characterization of a miniaturized
                                                                   024013.
                 15-MHz side-looking phased-array transducer catheter[J].
                                                                [62] Xia X X, Cai F Y, Li F, et al. Planar ultrasonic lenses
                 IEEE Transactions on Ultrasonics, Ferroelectrics, and Fre-
                                                                   formed by concentric circular sandwiched-ring arrays[J].
                 quency Control, 2019, 66(6): 1079–1092.
                                                                   Advanced Materials Technologies, 2019, 4(2): 1800542.
             [53] Abellard A P, Kuscer D, Gregoire J M, et al. Lead zir-
                                                                [63] Chen J, Rao J, Lisevych D, et al. Broadband ultrasonic fo-
                 conate titanate-based thick films for high-frequency fo-
                                                                   cusing in water with an ultra-compact metasurface lens[J].
                 cused ultrasound transducers prepared by electrophoretic
                                                                   Applied Physics Letters, 2019, 114(10): 104101.
                 deposition[J]. IEEE Transactions on Ultrasonics, Ferro-
                                                                [64] Li Z X, Guo R, Fei C L, et al. Liquid lens with adjustable
                 electrics, and Frequency Control, 2014, 61(3): 547–556.
                                                                   focus for ultrasonic imaging[J]. Applied Acoustics, 2021,
             [54] Kuscer D, Bustillo J, Bakarič T, et al. Acoustic proper-
                                                                   175: 107787.
                 ties of porous lead zirconate titanate backing for ultrasonic
                                                                [65] Lee J, Lee C, Kim H H, et al. Targeted cell immobi-
                 transducers[J]. IEEE Transactions on Ultrasonics, Ferro-
                 electrics, and Frequency Control, 2020, 67(8): 1656–1666.  lization by ultrasound microbeam[J]. Biotechnology and
             [55] 雷佳雨, 张宇, 侯春风, 等. 基于菲涅耳波带片的聚焦声透                   Bioengineering, 2011, 108(7): 1643–1650.
                 镜 [J]. 大学物理, 2018, 37(7): 63–69.               [66] Rahayu R H, Takanashi K, Soon T T K, et al. Reac-
                 Lei Jiayu, Zhang Yu, Hou Chunfeng, et al.  Focus-  tion assessment of cultured breast cancer cells exposed
                 ing acoustic lens based on Fresnel zone plate[J]. College  to anticancer agents using microscale acoustic impedance
                 Physics, 2018, 37(7): 63–69.                      profile[J]. Japanese Journal of Applied Physics, 2018,
             [56] 金文韬, 胡川, 沈博. 自聚焦 PVDF 超声换能器制作与研                  57(7S1): 07LF26.
                 究 [J]. 科技创新与应用, 2017(11): 66–67.               [67] Rohrbach D, Jakob A, Lloyd H O, et al. A novel quanti-
             [57] 马宏伟, 董明, 陈渊, 等. 基于矩形换能器空间脉冲响应的相                  tative 500-MHz acoustic microscopy system for ophthal-
                 控阵声场研究 [J]. 机械工程学报, 2014,50(18): 36–42.           mologic tissues[J]. IEEE Transactions on Biomedical En-
                 Ma Hongwei, Dong Ming, Chen Yuan, et al.  Re-     gineering, 2016, 64(3): 715–724.
                 search on acoustic field of ultrasonic linear phased array  [68] Fei C L, Hsu H S, Vafanejad A, et al. Ultrahigh fre-
                 based on spatial impulse response of rectangular planar  quency ZnO silicon lens ultrasonic transducer for cell-size
                 transducer [J]. Journal of Mechanical Engineering, 2014,  microparticle manipulation[J]. Journal of Alloys and Com-
                 50(18): 36–42.                                    pounds, 2017, 729: 556–562.
   175   176   177   178   179   180   181   182