Page 180 - 《应用声学》2022年第3期
P. 180
502 2022 年 5 月
[49] Hejazi M M, Jadidian B, Safari A. Fabrication and evalua- [58] Welter J T, Sathish S, Dierken J M, et al. Broadband
tion of a single-element Bi 0.5 Na 0.5 TiO 3 -based ultrasonic aperiodic air coupled ultrasonic lens[J]. Applied Physics
transducer[J]. IEEE Transactions on Ultrasonics, Ferro- Letters, 2012, 100(21): 214102.
electrics, and Frequency Control, 2012, 59(8): 1840–1847. [59] Kanno Y, Tsuruta K, Fujimori K, et al. Phononic-crystal
[50] Feng G H, Lin Z D. Micromachined flexible diaphragm acoustic lens by design for energy-transmission devices[J].
backed PZT ultrasonic transducer with a controllable self- Electronics and Communications in Japan, 2014, 97(1):
focused acoustic beam[J]. Measurement Science and Tech- 22–27.
nology, 2011, 22(12): 125204. [60] Al Jahdali R, Wu Y. High transmission acoustic focusing
[51] Peng X J, Peng J, Tang H, et al. Ultrahigh frequency mi- by impedance-matched acoustic meta-surfaces[J]. Applied
cromachined ultrasound transducers based on piezoelec- Physics Letters, 2016, 108(3): 031902.
tric single crystalline wafers[J]. Journal of Medical Imag- [61] Lopes J H, Andrade M A B, Leao-Neto J P, et al. Fo-
ing and Health Informatics, 2015, 5(2): 374–377.
cusing acoustic beams with a ball-shaped lens beyond the
[52] Cabrera-Munoz N E, Eliahoo P, Wodnicki R, et
diffraction limit[J]. Physical Review Applied, 2017, 8(2):
al. Fabrication and characterization of a miniaturized
024013.
15-MHz side-looking phased-array transducer catheter[J].
[62] Xia X X, Cai F Y, Li F, et al. Planar ultrasonic lenses
IEEE Transactions on Ultrasonics, Ferroelectrics, and Fre-
formed by concentric circular sandwiched-ring arrays[J].
quency Control, 2019, 66(6): 1079–1092.
Advanced Materials Technologies, 2019, 4(2): 1800542.
[53] Abellard A P, Kuscer D, Gregoire J M, et al. Lead zir-
[63] Chen J, Rao J, Lisevych D, et al. Broadband ultrasonic fo-
conate titanate-based thick films for high-frequency fo-
cusing in water with an ultra-compact metasurface lens[J].
cused ultrasound transducers prepared by electrophoretic
Applied Physics Letters, 2019, 114(10): 104101.
deposition[J]. IEEE Transactions on Ultrasonics, Ferro-
[64] Li Z X, Guo R, Fei C L, et al. Liquid lens with adjustable
electrics, and Frequency Control, 2014, 61(3): 547–556.
focus for ultrasonic imaging[J]. Applied Acoustics, 2021,
[54] Kuscer D, Bustillo J, Bakarič T, et al. Acoustic proper-
175: 107787.
ties of porous lead zirconate titanate backing for ultrasonic
[65] Lee J, Lee C, Kim H H, et al. Targeted cell immobi-
transducers[J]. IEEE Transactions on Ultrasonics, Ferro-
electrics, and Frequency Control, 2020, 67(8): 1656–1666. lization by ultrasound microbeam[J]. Biotechnology and
[55] 雷佳雨, 张宇, 侯春风, 等. 基于菲涅耳波带片的聚焦声透 Bioengineering, 2011, 108(7): 1643–1650.
镜 [J]. 大学物理, 2018, 37(7): 63–69. [66] Rahayu R H, Takanashi K, Soon T T K, et al. Reac-
Lei Jiayu, Zhang Yu, Hou Chunfeng, et al. Focus- tion assessment of cultured breast cancer cells exposed
ing acoustic lens based on Fresnel zone plate[J]. College to anticancer agents using microscale acoustic impedance
Physics, 2018, 37(7): 63–69. profile[J]. Japanese Journal of Applied Physics, 2018,
[56] 金文韬, 胡川, 沈博. 自聚焦 PVDF 超声换能器制作与研 57(7S1): 07LF26.
究 [J]. 科技创新与应用, 2017(11): 66–67. [67] Rohrbach D, Jakob A, Lloyd H O, et al. A novel quanti-
[57] 马宏伟, 董明, 陈渊, 等. 基于矩形换能器空间脉冲响应的相 tative 500-MHz acoustic microscopy system for ophthal-
控阵声场研究 [J]. 机械工程学报, 2014,50(18): 36–42. mologic tissues[J]. IEEE Transactions on Biomedical En-
Ma Hongwei, Dong Ming, Chen Yuan, et al. Re- gineering, 2016, 64(3): 715–724.
search on acoustic field of ultrasonic linear phased array [68] Fei C L, Hsu H S, Vafanejad A, et al. Ultrahigh fre-
based on spatial impulse response of rectangular planar quency ZnO silicon lens ultrasonic transducer for cell-size
transducer [J]. Journal of Mechanical Engineering, 2014, microparticle manipulation[J]. Journal of Alloys and Com-
50(18): 36–42. pounds, 2017, 729: 556–562.