Page 179 - 《应用声学》2022年第3期
P. 179

第 41 卷 第 3 期             陈燕等: 厚度模压电超声换能器无源声学材料研究进展                                          501


             [22] Huang S, Sun M, Zhou M, et al. Preparation and proper-  [35] State M, Brands P J, van de Vosse F N. Improving the
                 ties of 1–3 piezoelectric composite transducers[J]. Materi-  thermal dimensional stability of flexible polymer compos-
                 als and Manufacturing Processes, 2015, 30(2): 179–183.  ite backing materials for ultrasound transducers[J]. Ultra-
             [23] Guo F F, Wang Y L, Huang Z Y, et al.  Magnesium  sonics, 2010, 50(4–5): 458–466.
                 alloy matching layer for PMN-PT single crystal trans-  [36] Toda M, Thompson M. Metal-polymer multilayer ab-
                 ducer applications[J]. IEEE Transactions on Ultrason-  sorber for ultrasonic transducers[C]//2011 IEEE Interna-
                 ics, Ferroelectrics, and Frequency Control, 2018, 65(10):  tional Ultrasonics Symposium. IEEE, 2011: 840–843.
                 1865–1872.                                     [37] Takahashi  S.  Properties  and  characteristics  of  P
             [24] Fang H J, Chen Y, Wong C M, et al. Anodic aluminum  (VDF/TrFE) transducers manufactured by a solution
                 oxide–epoxy composite acoustic matching layers for ul-  casting method for use in the MHz-range ultrasound in
                 trasonic transducer application[J]. Ultrasonics, 2016, 70:  air[J]. Ultrasonics, 2012, 52(3): 422–426.
                 29–33.                                         [38] Bae B, Lee H, Lee S, et al. Development of a highly
             [25] Korres G, Eid M. Improving performance of ultrasound  attenuative backing for ultrasonic transducers with pe-
                 transducers with aerogel matching layer for tactile dis-  riodic arrangement of polymeric rods inside the back-
                 play[C]//2018 IEEE International Symposium on Haptic,  ing[C]//2013 Joint UFFC, EFTF and PFM Symposium,
                 Audio and Visual Environments and Games, 2018: 1–6.  2013: 1105–1108.
             [26] Ramadas S N, Hunter M, Thornby J, et al. Additive man-  [39] Woo J, Roh Y. Ultrasonic two-dimensional array trans-
                 ufacture of impedance matching layers for air-coupled ul-  ducer of the single-unit type with a conductive backing of
                 trasonic transducers[C]//2015 IEEE International Ultra-  the 1–3 piezocomposite structure[J]. Japanese Journal of
                 sonics Symposium Proceedings , 2015: 1–4.         Applied Physics, 2014, 53(7S): 07KD06.
             [27] Amoroso L, Ramadas S N, Klieber C, et al.  Novel  [40] Qiu Y F, Liu J J, Yang H H, et al. Graphene oxide-
                 nanocomposite materials for improving passive layers in  stimulated acoustic attenuating performance of tungsten
                 air-coupled ultrasonic transducer applications[C]//2019  based epoxy films[J]. Journal of Materials Chemistry C,
                 IEEE  International  Ultrasonics  Symposium,  2019:  2015, 3(41): 10848–10855.
                 2608–2611.                                     [41] Qiu Y F, Liu J J, Lu Y, et al.  Hierarchical assem-
             [28] Zhou Q F, Cha J H, Huang Y H, et al. Alumina/epoxy  bly of tungsten spheres and epoxy composites in three-
                 nanocomposite matching layers for high-frequency ultra-  dimensional graphene foam and its enhanced acoustic per-
                 sound transducer application[J]. IEEE Transactions on  formance as a backing material[J]. ACS Applied Materials
                 Ultrasonics, Ferroelectrics, and Frequency Control, 2009,  & Interfaces, 2016, 8(28): 18496–18504.
                 56(1): 213–219.                                [42] Cho E, Park G, Lee J W, et al. Effect of alumina compo-
             [29] Zhang Z Q, Li F, Chen R M, et al. High-performance ul-  sition and surface integrity in alumina/epoxy composites
                 trasound needle transducer based on modified PMN-PT  on the ultrasonic attenuation properties[J]. Ultrasonics,
                 ceramic with ultrahigh clamped dielectric permittivity[J].  2016, 66: 133–139.
                 IEEE Transactions on Ultrasonics, Ferroelectrics, and Fre-  [43] 蓝咏, 纪轩荣. 一种用于超声波无损检测探头的背衬材料及其
                 quency Control, 2017, 65(2): 223–230.             制造方法: 广东, CN102346172A [P]. 2012–02–08.
             [30] Fei C L, Chiu C T, Chen X Y, et al. Ultrahigh frequency  [44] Amini M H, Sinclair A N, Coyle T W. Development of a
                 (100 MHz-300 MHz) ultrasonic transducers for optical  high temperature transducer backing element with porous
                 resolution medical imagining[J]. Scientific Reports, 2016,  ceramics[C]//2014 IEEE International Ultrasonics Sym-
                 6(1): 1–8.                                        posium Proceedings, 2014: 967–970.
             [31] Tiefensee F, Becker-Willinger C, Heppe G, et al.  [45] Amini M H, Coyle T W, Sinclair T. Porous ceramics
                 Nanocomposite cerium oxide polymer matching layers  as backing element for high-temperature transducers[J].
                 with adjustable acoustic impedance between 4 MRayl and  IEEE Transactions on Ultrasonics, Ferroelectrics, and Fre-
                 7 MRayl[J]. Ultrasonics, 2010, 50(3): 363–366.    quency Control, 2015, 62(2): 360–372.
             [32] Manh T, Jensen G U, Johansen T F, et al. Microfabri-  [46] Amini M H, Sinclair A N, Coyle T W. A new high-
                 cated 1–3 composite acoustic matching layers for 15 MHz  temperature ultrasonic transducer for continuous inspec-
                 transducers[J]. Ultrasonics, 2013, 53(6): 1141–1149.  tion[J]. IEEE Transactions on Ultrasonics, Ferroelectrics,
             [33] Wong C M, Chan S F, Wu W C, et al. Tunable high  and Frequency Control, 2016, 63(3): 448–455.
                 acoustic impedance alumina epoxy composite matching  [47] Yang X, Li Z, Fei C, et al. High frequency needle ultra-
                 for high frequency ultrasound transducer[J]. Ultrasonics,  sonic transducers based on Mn doped piezoelectric single
                 2021, 116: 106506.                                crystal[J]. Journal of Alloys and Compounds, 2020, 832:
             [34] Brown J A, Sharma S, Leadbetter J, et al.  Mass-  154951.
                 spring matching layers for high-frequency ultrasound  [48] Hsu H S, Benjauthrit V, Zheng F, et al. PMN-PT-PZT
                 transducers: a new technique using vacuum deposition[J].  composite films for high frequency ultrasonic transducer
                 IEEE Transactions on Ultrasonics, Ferroelectrics, and Fre-  applications[J]. Sensors and Actuators A: Physical, 2012,
                 quency Control, 2014, 61(11): 1911–1921.          179: 121–124.
   174   175   176   177   178   179   180   181   182