Page 179 - 《应用声学》2022年第3期
P. 179
第 41 卷 第 3 期 陈燕等: 厚度模压电超声换能器无源声学材料研究进展 501
[22] Huang S, Sun M, Zhou M, et al. Preparation and proper- [35] State M, Brands P J, van de Vosse F N. Improving the
ties of 1–3 piezoelectric composite transducers[J]. Materi- thermal dimensional stability of flexible polymer compos-
als and Manufacturing Processes, 2015, 30(2): 179–183. ite backing materials for ultrasound transducers[J]. Ultra-
[23] Guo F F, Wang Y L, Huang Z Y, et al. Magnesium sonics, 2010, 50(4–5): 458–466.
alloy matching layer for PMN-PT single crystal trans- [36] Toda M, Thompson M. Metal-polymer multilayer ab-
ducer applications[J]. IEEE Transactions on Ultrason- sorber for ultrasonic transducers[C]//2011 IEEE Interna-
ics, Ferroelectrics, and Frequency Control, 2018, 65(10): tional Ultrasonics Symposium. IEEE, 2011: 840–843.
1865–1872. [37] Takahashi S. Properties and characteristics of P
[24] Fang H J, Chen Y, Wong C M, et al. Anodic aluminum (VDF/TrFE) transducers manufactured by a solution
oxide–epoxy composite acoustic matching layers for ul- casting method for use in the MHz-range ultrasound in
trasonic transducer application[J]. Ultrasonics, 2016, 70: air[J]. Ultrasonics, 2012, 52(3): 422–426.
29–33. [38] Bae B, Lee H, Lee S, et al. Development of a highly
[25] Korres G, Eid M. Improving performance of ultrasound attenuative backing for ultrasonic transducers with pe-
transducers with aerogel matching layer for tactile dis- riodic arrangement of polymeric rods inside the back-
play[C]//2018 IEEE International Symposium on Haptic, ing[C]//2013 Joint UFFC, EFTF and PFM Symposium,
Audio and Visual Environments and Games, 2018: 1–6. 2013: 1105–1108.
[26] Ramadas S N, Hunter M, Thornby J, et al. Additive man- [39] Woo J, Roh Y. Ultrasonic two-dimensional array trans-
ufacture of impedance matching layers for air-coupled ul- ducer of the single-unit type with a conductive backing of
trasonic transducers[C]//2015 IEEE International Ultra- the 1–3 piezocomposite structure[J]. Japanese Journal of
sonics Symposium Proceedings , 2015: 1–4. Applied Physics, 2014, 53(7S): 07KD06.
[27] Amoroso L, Ramadas S N, Klieber C, et al. Novel [40] Qiu Y F, Liu J J, Yang H H, et al. Graphene oxide-
nanocomposite materials for improving passive layers in stimulated acoustic attenuating performance of tungsten
air-coupled ultrasonic transducer applications[C]//2019 based epoxy films[J]. Journal of Materials Chemistry C,
IEEE International Ultrasonics Symposium, 2019: 2015, 3(41): 10848–10855.
2608–2611. [41] Qiu Y F, Liu J J, Lu Y, et al. Hierarchical assem-
[28] Zhou Q F, Cha J H, Huang Y H, et al. Alumina/epoxy bly of tungsten spheres and epoxy composites in three-
nanocomposite matching layers for high-frequency ultra- dimensional graphene foam and its enhanced acoustic per-
sound transducer application[J]. IEEE Transactions on formance as a backing material[J]. ACS Applied Materials
Ultrasonics, Ferroelectrics, and Frequency Control, 2009, & Interfaces, 2016, 8(28): 18496–18504.
56(1): 213–219. [42] Cho E, Park G, Lee J W, et al. Effect of alumina compo-
[29] Zhang Z Q, Li F, Chen R M, et al. High-performance ul- sition and surface integrity in alumina/epoxy composites
trasound needle transducer based on modified PMN-PT on the ultrasonic attenuation properties[J]. Ultrasonics,
ceramic with ultrahigh clamped dielectric permittivity[J]. 2016, 66: 133–139.
IEEE Transactions on Ultrasonics, Ferroelectrics, and Fre- [43] 蓝咏, 纪轩荣. 一种用于超声波无损检测探头的背衬材料及其
quency Control, 2017, 65(2): 223–230. 制造方法: 广东, CN102346172A [P]. 2012–02–08.
[30] Fei C L, Chiu C T, Chen X Y, et al. Ultrahigh frequency [44] Amini M H, Sinclair A N, Coyle T W. Development of a
(100 MHz-300 MHz) ultrasonic transducers for optical high temperature transducer backing element with porous
resolution medical imagining[J]. Scientific Reports, 2016, ceramics[C]//2014 IEEE International Ultrasonics Sym-
6(1): 1–8. posium Proceedings, 2014: 967–970.
[31] Tiefensee F, Becker-Willinger C, Heppe G, et al. [45] Amini M H, Coyle T W, Sinclair T. Porous ceramics
Nanocomposite cerium oxide polymer matching layers as backing element for high-temperature transducers[J].
with adjustable acoustic impedance between 4 MRayl and IEEE Transactions on Ultrasonics, Ferroelectrics, and Fre-
7 MRayl[J]. Ultrasonics, 2010, 50(3): 363–366. quency Control, 2015, 62(2): 360–372.
[32] Manh T, Jensen G U, Johansen T F, et al. Microfabri- [46] Amini M H, Sinclair A N, Coyle T W. A new high-
cated 1–3 composite acoustic matching layers for 15 MHz temperature ultrasonic transducer for continuous inspec-
transducers[J]. Ultrasonics, 2013, 53(6): 1141–1149. tion[J]. IEEE Transactions on Ultrasonics, Ferroelectrics,
[33] Wong C M, Chan S F, Wu W C, et al. Tunable high and Frequency Control, 2016, 63(3): 448–455.
acoustic impedance alumina epoxy composite matching [47] Yang X, Li Z, Fei C, et al. High frequency needle ultra-
for high frequency ultrasound transducer[J]. Ultrasonics, sonic transducers based on Mn doped piezoelectric single
2021, 116: 106506. crystal[J]. Journal of Alloys and Compounds, 2020, 832:
[34] Brown J A, Sharma S, Leadbetter J, et al. Mass- 154951.
spring matching layers for high-frequency ultrasound [48] Hsu H S, Benjauthrit V, Zheng F, et al. PMN-PT-PZT
transducers: a new technique using vacuum deposition[J]. composite films for high frequency ultrasonic transducer
IEEE Transactions on Ultrasonics, Ferroelectrics, and Fre- applications[J]. Sensors and Actuators A: Physical, 2012,
quency Control, 2014, 61(11): 1911–1921. 179: 121–124.