Page 44 - 《应用声学》2022年第6期
P. 44

890                                                                                 2022 年 11 月


                                           ᮕ฾ϙ     ࢺц1      ࢺц2      ࢺц3     ࢺц4
                                           តᰎϙ     ࢺц1      ࢺц2      ࢺц3     ࢺц4


                                                          5 dB                                    5 dB
                      Ҫဋ៨/dB                                    Ҫဋ៨/dB







                      20           200          2000            20           200          2000
                                       ᮠဋ/Hz                                     ᮠဋ/Hz
                                      (a) 2Ղ฾ག                                  (b) 8Ղ฾ག
                                             图 11  试验值和优化后的预测结果对比
                                  Fig. 11 Comparison of test value and optimized prediction result
                  表 4   最小二乘法求 A、B (基于 8 号测点)                    [6] Howe M S. Sound generation in a fluid with rigid
                                                                   boundaries[M]// Acoustics of fluid-structures interac-
                Table 4 Calculating parameter A and B
                                                                   tions.  Cambridge: Cambridge University Press, 1998:
                by least square method (based on Point 8)
                                                                   164–166.
                                                                 [7] Goody M. Empirical spectral model of surface pressure
                  参数     工况 1    工况 2    工况 3     工况 4
                                                                   fluctuations[J]. AIAA Journal, 2004, 42(9): 1788–1794.
                   A      1.4     1.8     1.5      1.7           [8] Efimtsov B M. Characteristics of the field of turbulent
                  B       1.2      1      1.2      1               wall pressure-fluctuations at large Reynolds-numbers[J].
                                                                   Soviet Physics Acoustics-USSR, 1982, 28(4): 289–292.
             4 结论                                                [9] Efimtsov B, Kozlov N, Kravchenko S, et al. Wall pressure-
                                                                   fluctuation spectra at small forward-facing steps[C]//5th
                 本文对某型民机巡航阶段的机体表面压力脉                               AIAA/CEAS Aeroacoustics Conference and Exhibit,
                                                                   1999: 1964.
             动进行了分析。机身表面的压力脉动主要由湍流边                             [10] Rackl R G, Weston A. Modeling of turbulent boundary
             界层噪声贡献,在前后机身区域,发动机噪声完全淹                               layer surface pressure fluctuation auto and cross spectra:
             没在湍流边界层噪声中。湍流边界层噪声的幅值与                                verification and adjustments based on tu-144ll data[M].
                                                                   National Aeronautics and Space Administration, Langley
             动压呈正相关。边界层厚度对湍流边界层噪声的影                                Research Center, 2005.
             响主要在低频区域,边界层越厚,低频噪声越大。逆                            [11] Spehr C, Hennings H, Buchholz H, et al. In-flight sound
             压梯度会使边界层噪声变大,而顺压梯度的影响较                                measurements: a first overview[C]//18th AIAA/CEAS
                                                                   Aeroacoustics Conference (33rd AIAA Aeroacoustics Con-
             小。基于 Robertson 模型计算得到的湍流边界层噪                          ference), 2012: 2208.
             声与试验结果吻合较好,对模型中的参数进行优化,                            [12] Kraichnan R H. Pressure fluctuations in turbulent flow
             可以进一步减小预测结果和试验结果的差异。                                  over a flat plate[J]. The Journal of the Acoustical Society
                                                                   of America, 1956, 28(3): 378–390.
                                                                [13] Willmarth W W, Wooldridge C E. Measurements of the
                            参 考     文   献
                                                                   fluctuating pressure at the wall beneath a thick turbu-
              [1] Alujevic N, Gardonio P, Frampton K D. Smart double  lent boundary layer[J]. Journal of Fluid Mechanics, 1962,
                 panel with decentralized active dampers for sound trans-  14(2): 187–210.
                 mission control[J]. AIAA Journal, 2008, 46(6): 1463–1475.  [14] Lauchle G C, Daniels M A. Wall-pressure fluctuations in
              [2] Robertson J E. Prediction of in flight fluctuating pressure  turbulent pipe flow[J]. Physics of Fluids, 1987, 30(10):
                 environments including protuberance induced flow[R].  3019–3024.
                 Work of the US Government Public Use Permitted, 1971.  [15] Farabee T M, Casarella M J. Spectral features of wall
              [3] Lowson M V. Prediction of boundary layer pressure fluctu-  pressure fluctuations beneath turbulent boundary lay-
                 ations[R]. Wyle Labs Inc Huntsville Al Testing Div, 1968.  ers[J]. Physics of Fluids A: Fluid Dynamics, 1991, 3(10):
              [4] Cockburn J A, Robertson J E. Vibration response of  2410–2420.
                 spacecraft shrouds toin-flight fluctuating pressures[J].  [16] Lueptow R M. Transducer resolution and the turbulent
                 Journal of Sound & Vibration, 1974, 33(4): 399–425.  wall pressure spectrum[J]. The Journal of the Acoustical
              [5] Chase D M. Modeling the wavevector-frequency spectrum  Society of America, 1995, 97(1): 370–378.
                 of turbulent boundary layer wall pressure[J]. Journal of  [17] White F M. Viscous fluid flow[M]. NewYork: McGraw-
                 Sound & Vibration, 1980, 70(1): 29–67.            Hil1, 1991.
   39   40   41   42   43   44   45   46   47   48   49