Page 44 - 《应用声学》2022年第6期
P. 44
890 2022 年 11 月
ᮕϙ ࢺц1 ࢺц2 ࢺц3 ࢺц4
តᰎϙ ࢺц1 ࢺц2 ࢺц3 ࢺц4
5 dB 5 dB
Ҫဋ៨/dB Ҫဋ៨/dB
20 200 2000 20 200 2000
ᮠဋ/Hz ᮠဋ/Hz
(a) 2Ղག (b) 8Ղག
图 11 试验值和优化后的预测结果对比
Fig. 11 Comparison of test value and optimized prediction result
表 4 最小二乘法求 A、B (基于 8 号测点) [6] Howe M S. Sound generation in a fluid with rigid
boundaries[M]// Acoustics of fluid-structures interac-
Table 4 Calculating parameter A and B
tions. Cambridge: Cambridge University Press, 1998:
by least square method (based on Point 8)
164–166.
[7] Goody M. Empirical spectral model of surface pressure
参数 工况 1 工况 2 工况 3 工况 4
fluctuations[J]. AIAA Journal, 2004, 42(9): 1788–1794.
A 1.4 1.8 1.5 1.7 [8] Efimtsov B M. Characteristics of the field of turbulent
B 1.2 1 1.2 1 wall pressure-fluctuations at large Reynolds-numbers[J].
Soviet Physics Acoustics-USSR, 1982, 28(4): 289–292.
4 结论 [9] Efimtsov B, Kozlov N, Kravchenko S, et al. Wall pressure-
fluctuation spectra at small forward-facing steps[C]//5th
本文对某型民机巡航阶段的机体表面压力脉 AIAA/CEAS Aeroacoustics Conference and Exhibit,
1999: 1964.
动进行了分析。机身表面的压力脉动主要由湍流边 [10] Rackl R G, Weston A. Modeling of turbulent boundary
界层噪声贡献,在前后机身区域,发动机噪声完全淹 layer surface pressure fluctuation auto and cross spectra:
没在湍流边界层噪声中。湍流边界层噪声的幅值与 verification and adjustments based on tu-144ll data[M].
National Aeronautics and Space Administration, Langley
动压呈正相关。边界层厚度对湍流边界层噪声的影 Research Center, 2005.
响主要在低频区域,边界层越厚,低频噪声越大。逆 [11] Spehr C, Hennings H, Buchholz H, et al. In-flight sound
压梯度会使边界层噪声变大,而顺压梯度的影响较 measurements: a first overview[C]//18th AIAA/CEAS
Aeroacoustics Conference (33rd AIAA Aeroacoustics Con-
小。基于 Robertson 模型计算得到的湍流边界层噪 ference), 2012: 2208.
声与试验结果吻合较好,对模型中的参数进行优化, [12] Kraichnan R H. Pressure fluctuations in turbulent flow
可以进一步减小预测结果和试验结果的差异。 over a flat plate[J]. The Journal of the Acoustical Society
of America, 1956, 28(3): 378–390.
[13] Willmarth W W, Wooldridge C E. Measurements of the
参 考 文 献
fluctuating pressure at the wall beneath a thick turbu-
[1] Alujevic N, Gardonio P, Frampton K D. Smart double lent boundary layer[J]. Journal of Fluid Mechanics, 1962,
panel with decentralized active dampers for sound trans- 14(2): 187–210.
mission control[J]. AIAA Journal, 2008, 46(6): 1463–1475. [14] Lauchle G C, Daniels M A. Wall-pressure fluctuations in
[2] Robertson J E. Prediction of in flight fluctuating pressure turbulent pipe flow[J]. Physics of Fluids, 1987, 30(10):
environments including protuberance induced flow[R]. 3019–3024.
Work of the US Government Public Use Permitted, 1971. [15] Farabee T M, Casarella M J. Spectral features of wall
[3] Lowson M V. Prediction of boundary layer pressure fluctu- pressure fluctuations beneath turbulent boundary lay-
ations[R]. Wyle Labs Inc Huntsville Al Testing Div, 1968. ers[J]. Physics of Fluids A: Fluid Dynamics, 1991, 3(10):
[4] Cockburn J A, Robertson J E. Vibration response of 2410–2420.
spacecraft shrouds toin-flight fluctuating pressures[J]. [16] Lueptow R M. Transducer resolution and the turbulent
Journal of Sound & Vibration, 1974, 33(4): 399–425. wall pressure spectrum[J]. The Journal of the Acoustical
[5] Chase D M. Modeling the wavevector-frequency spectrum Society of America, 1995, 97(1): 370–378.
of turbulent boundary layer wall pressure[J]. Journal of [17] White F M. Viscous fluid flow[M]. NewYork: McGraw-
Sound & Vibration, 1980, 70(1): 29–67. Hil1, 1991.