Page 181 - 《应用声学》2023年第3期
P. 181
第 42 卷 第 3 期 孙雪聪等: 基于深度学习的低频宽带隔声器件设计 619
Magazine, 2012, 29(6): 82–97. [17] Malkiel I, Mrejen M, Nagler A, et al. Plasmonic nanos-
[12] Socher R, Chen D, Manning C D, et al. Reasoning tructure design and characterization via deep learning[J].
with neural tensor networks for knowledge base comple- Light: Science & Applications, 2018, 7(1): 60.
tion[C]//Advances in Neural Information Processing Sys- [18] Peurifoy J, Shen Y, Jing L, et al. Nanophotonic particle
tems, 2013: 926–934. simulation and inverse design using artificial neural net-
works[J]. Science Advances, 2018, 4(6): eaar4206.
[13] Sanchez-Lengeling B, Aspuru-Guzik A. Inverse molecu-
[19] Sun X, Jia H, Yang Y, et al. Acoustic structure inverse
lar design using machine learning: generative models for
design and optimization using deep learning[J]. arXiv
matter engineering[J]. Science, 2018, 361(6400): 360–365.
Preprint, arXiv: 2102.02063, 2021.
[14] Goh G B, Hodas N O, Vishnu A. Deep learning for com-
[20] Long H, Cheng Y, Liu X. Reconfigurable sound anoma-
putational chemistry[J]. Journal of Computational Chem-
lous absorptions in transparent waveguide with modu-
istry, 2017, 38(16): 1291–1307.
larized multi-order Helmholtz resonator[J]. Scientific Re-
[15] Carrasquilla J, Melko R G. Machine learning phases of ports, 2018, 8(1): 15678.
matter[J]. Nature Physics, 2017, 13(5): 431–434. [21] Long H, Chen L, Chen S, et al. Tunable and broadband
[16] Ma W, Liu Z, Kudyshev Z A, et al. Deep learning for the asymmetric sound absorptions with coupling of acoustic
design of photonic structures[J]. Nature Photonics, 2021, bright and dark modes[J]. Journal of Sound and Vibra-
15(2): 77–90. tion, 2020, 479: 115371.