Page 181 - 《应用声学》2023年第3期
P. 181

第 42 卷 第 3 期              孙雪聪等: 基于深度学习的低频宽带隔声器件设计                                           619


                 Magazine, 2012, 29(6): 82–97.                  [17] Malkiel I, Mrejen M, Nagler A, et al. Plasmonic nanos-
             [12] Socher R, Chen D, Manning C D, et al.  Reasoning  tructure design and characterization via deep learning[J].
                 with neural tensor networks for knowledge base comple-  Light: Science & Applications, 2018, 7(1): 60.
                 tion[C]//Advances in Neural Information Processing Sys-  [18] Peurifoy J, Shen Y, Jing L, et al. Nanophotonic particle
                 tems, 2013: 926–934.                              simulation and inverse design using artificial neural net-
                                                                   works[J]. Science Advances, 2018, 4(6): eaar4206.
             [13] Sanchez-Lengeling B, Aspuru-Guzik A. Inverse molecu-
                                                                [19] Sun X, Jia H, Yang Y, et al. Acoustic structure inverse
                 lar design using machine learning: generative models for
                                                                   design and optimization using deep learning[J]. arXiv
                 matter engineering[J]. Science, 2018, 361(6400): 360–365.
                                                                   Preprint, arXiv: 2102.02063, 2021.
             [14] Goh G B, Hodas N O, Vishnu A. Deep learning for com-
                                                                [20] Long H, Cheng Y, Liu X. Reconfigurable sound anoma-
                 putational chemistry[J]. Journal of Computational Chem-
                                                                   lous absorptions in transparent waveguide with modu-
                 istry, 2017, 38(16): 1291–1307.
                                                                   larized multi-order Helmholtz resonator[J]. Scientific Re-
             [15] Carrasquilla J, Melko R G. Machine learning phases of  ports, 2018, 8(1): 15678.
                 matter[J]. Nature Physics, 2017, 13(5): 431–434.  [21] Long H, Chen L, Chen S, et al. Tunable and broadband
             [16] Ma W, Liu Z, Kudyshev Z A, et al. Deep learning for the  asymmetric sound absorptions with coupling of acoustic
                 design of photonic structures[J]. Nature Photonics, 2021,  bright and dark modes[J]. Journal of Sound and Vibra-
                 15(2): 77–90.                                     tion, 2020, 479: 115371.
   176   177   178   179   180   181   182   183   184   185   186