Page 28 - 《应用声学》2023年第3期
P. 28
466 2023 年 5 月
来缩小有效字典原子的范围,从而降低估计差错的 [10] Tropp J A, Gilbert A C. Signal recovery from partial infor-
可能性,文中给出了具体的实现方案和算法步骤。 mation via orthogonal matching pursuit[J]. IEEE Trans-
actions on Information Theory, 2007, 53(12): 4655–4666.
实验结果表明了该方法相较于传统的 CS和DCS信
[11] Tropp J A, Gilbert A C, Strauss M J. Simulataneous
道估计算法的性能优势。采用本方法进行 10 个数 sparse approximation via greedy pursuit[C]. ICASSP,
据块的联合信道估计,并通过12个多水听器合并均 2005.
衡后,相较于传统 DCS 算法,本方法能够降低 50% [12] 周跃海, 曹秀岭, 陈东升, 等. 长时延扩展水声信道的联合稀
疏恢复估计 [J]. 通信学报, 2016, 37(2): 166–173.
的误码率。
Zhou Yuehai, Cao Xiuling, Chen Dongsheng, et al. Joint-
ing sparse recovery estimation algorithm of underwater
致谢 感谢参与本次水声通信实验的全体工作人员 acoustic channels with long time delay spread[J]. Journal
为本文提供了可靠的实验数据。 on Communications, 2016, 37(2): 166–173.
[13] 周跃海, 童峰, 郑思远, 等. 多频带水声信道的时频联合稀疏
估计 [J]. 声学学报, 2019, 44(4): 665–674.
Zhou Yuehai, Tong Feng, Zheng Siyuan, et al. Joint
参 考 文 献
emporal-specttral sparse estimation of underwater acous-
tic multiband channel[J]. Acta Acustica, 2019, 44(4):
[1] Stojanovic M. Low complexity ofdm detector for under- 665–674.
water acoustic channels[C]. OCEANS, 2006. [14] Zhou Y, Tong F. Zhang G. Distributed compressed sens-
[2] Li B, Zhou S, Stojanovic M, et al. Pilot-tone based ZP- ing estimation of underwater acoustic OFDM channel[J].
OFDM demodulation for an underwater acoustic chan- Applied Acoustics, 2017, 117(A): 160–166.
nel[C]. OCEANS, 2006. [15] Qiao G, Song Q J, Ma L, et al . Sparse Bayesian learn-
[3] Kang T, Song H C, Hodgkiss W S. Long-range multi- ing for channel estimation in time-varying underwater
carrier acoustic communication in deep water using a acoustic OFDM communication[J], IEEE Access, 2018, 6:
towed horizontal array[J]. The Journal of the Acoustical 56675–56684.
Society of America, 2012, 131(6): 4665–4671. [16] Qiao G, Song Q J, Ma L, et al. Channel prediction based
[4] Wang Z H, Zhou S L, Catipovic J, et al. Factor-graph- temporal multiple sparse Bayesian learning for channel es-
based joint IBI/ICI mitigation for OFDM in underwa- timation in fast time-varying underwater acoustic OFDM
ter acoustic multipath channels with long-separated clus- communications[J]. Signal Processing, 2020, 75: 107668.
ters[J]. IEEE Journal of Oceanic Engineering, 2012, 37(4): [17] Wang Z H, Zhou S L, Preisig J C, et al. Clustered adap-
680–694. tation for estimation of time-varying underwater acous-
[5] Stojanovic M. OFDM for underwater acoustic communi- tic channels[J]. IEEE Trans. Signal Process, 2012, 60(6):
cations: adaptive synchronization and sparse channel es- 3079–3091.
timation[C]. IEEE International Conference on Acoustics, [18] Wang Z H, Zhou S L, Preisig J C, et al. Per-cluster-
Speech and Signal Processing, 2008: 5288–5291. prediction based sparse channel estimation for multi-
[6] Donoho D L. Compressed sensing[J]. IEEE Transactions carrier underwater acoustic communications[C]. Signal
on Information Theory, 2006, 52(4): 1289–1306. Processing, Communications and Computing (ICSPCC),
[7] Berger C R, Zhou S, Preisig J C, et al. Sparse channel 2011 IEEE International Conference on, 2011: 1–6.
estimation for multicarrier underwater acoustic communi- [19] Li B S, Zhou S L, Stojanovic M, et al. Multicarrier
cation: from subspace methods to compressed sensing[J]. communication over underwater acoustic channels with
IEEE Transactions on Signal Processing, 2010, 58(3): nonuniform doppler shifts[J]. IEEE Journal of Oceanic
1708–1721. Engineering, 2008, 33(2): 198–209.
[8] Baron D, Duarte M F, Wakin M B, et al. Distributed [20] Kassam S A. Signal detection in non-gaussian noise[M].
compressive sensing[J]. 2009: ArXiv, abs/0901.3403. New York: Springer, 1987.
[9] Duarte M F, Sarvotham S, Baron D, et al. Distributed [21] Abraham D A, Willett P K. Active sonar detection in shal-
compressed sensing of jointly sparse signals[C]. ACSSC, low water using the Page test[J]. IEEE Journal of Oceanic
2005: 1537–1541. Engineering, 2002, 27(1): 35–46.