Page 28 - 《应用声学》2023年第3期
P. 28

466                                                                                  2023 年 5 月


             来缩小有效字典原子的范围,从而降低估计差错的                             [10] Tropp J A, Gilbert A C. Signal recovery from partial infor-
             可能性,文中给出了具体的实现方案和算法步骤。                                mation via orthogonal matching pursuit[J]. IEEE Trans-
                                                                   actions on Information Theory, 2007, 53(12): 4655–4666.
             实验结果表明了该方法相较于传统的 CS和DCS信
                                                                [11] Tropp J A, Gilbert A C, Strauss M J. Simulataneous
             道估计算法的性能优势。采用本方法进行 10 个数                              sparse approximation via greedy pursuit[C]. ICASSP,
             据块的联合信道估计,并通过12个多水听器合并均                               2005.
             衡后,相较于传统 DCS 算法,本方法能够降低 50%                        [12] 周跃海, 曹秀岭, 陈东升, 等. 长时延扩展水声信道的联合稀
                                                                   疏恢复估计 [J]. 通信学报, 2016, 37(2): 166–173.
             的误码率。
                                                                   Zhou Yuehai, Cao Xiuling, Chen Dongsheng, et al. Joint-
                                                                   ing sparse recovery estimation algorithm of underwater
             致谢 感谢参与本次水声通信实验的全体工作人员                                acoustic channels with long time delay spread[J]. Journal
             为本文提供了可靠的实验数据。                                        on Communications, 2016, 37(2): 166–173.
                                                                [13] 周跃海, 童峰, 郑思远, 等. 多频带水声信道的时频联合稀疏
                                                                   估计 [J]. 声学学报, 2019, 44(4): 665–674.
                                                                   Zhou Yuehai, Tong Feng, Zheng Siyuan, et al.  Joint
                            参 考     文   献
                                                                   emporal-specttral sparse estimation of underwater acous-
                                                                   tic multiband channel[J]. Acta Acustica, 2019, 44(4):
              [1] Stojanovic M. Low complexity ofdm detector for under-  665–674.
                 water acoustic channels[C]. OCEANS, 2006.      [14] Zhou Y, Tong F. Zhang G. Distributed compressed sens-
              [2] Li B, Zhou S, Stojanovic M, et al. Pilot-tone based ZP-  ing estimation of underwater acoustic OFDM channel[J].
                 OFDM demodulation for an underwater acoustic chan-  Applied Acoustics, 2017, 117(A): 160–166.
                 nel[C]. OCEANS, 2006.                          [15] Qiao G, Song Q J, Ma L, et al . Sparse Bayesian learn-
              [3] Kang T, Song H C, Hodgkiss W S. Long-range multi-  ing for channel estimation in time-varying underwater
                 carrier acoustic communication in deep water using a  acoustic OFDM communication[J], IEEE Access, 2018, 6:
                 towed horizontal array[J]. The Journal of the Acoustical  56675–56684.
                 Society of America, 2012, 131(6): 4665–4671.   [16] Qiao G, Song Q J, Ma L, et al. Channel prediction based
              [4] Wang Z H, Zhou S L, Catipovic J, et al. Factor-graph-  temporal multiple sparse Bayesian learning for channel es-
                 based joint IBI/ICI mitigation for OFDM in underwa-  timation in fast time-varying underwater acoustic OFDM
                 ter acoustic multipath channels with long-separated clus-  communications[J]. Signal Processing, 2020, 75: 107668.
                 ters[J]. IEEE Journal of Oceanic Engineering, 2012, 37(4):  [17] Wang Z H, Zhou S L, Preisig J C, et al. Clustered adap-
                 680–694.                                          tation for estimation of time-varying underwater acous-
              [5] Stojanovic M. OFDM for underwater acoustic communi-  tic channels[J]. IEEE Trans. Signal Process, 2012, 60(6):
                 cations: adaptive synchronization and sparse channel es-  3079–3091.
                 timation[C]. IEEE International Conference on Acoustics,  [18] Wang Z H, Zhou S L, Preisig J C, et al. Per-cluster-
                 Speech and Signal Processing, 2008: 5288–5291.    prediction based sparse channel estimation for multi-
              [6] Donoho D L. Compressed sensing[J]. IEEE Transactions  carrier underwater acoustic communications[C]. Signal
                 on Information Theory, 2006, 52(4): 1289–1306.    Processing, Communications and Computing (ICSPCC),
              [7] Berger C R, Zhou S, Preisig J C, et al. Sparse channel  2011 IEEE International Conference on, 2011: 1–6.
                 estimation for multicarrier underwater acoustic communi-  [19] Li B S, Zhou S L, Stojanovic M, et al.  Multicarrier
                 cation: from subspace methods to compressed sensing[J].  communication over underwater acoustic channels with
                 IEEE Transactions on Signal Processing, 2010, 58(3):  nonuniform doppler shifts[J]. IEEE Journal of Oceanic
                 1708–1721.                                        Engineering, 2008, 33(2): 198–209.
              [8] Baron D, Duarte M F, Wakin M B, et al. Distributed  [20] Kassam S A. Signal detection in non-gaussian noise[M].
                 compressive sensing[J]. 2009: ArXiv, abs/0901.3403.  New York: Springer, 1987.
              [9] Duarte M F, Sarvotham S, Baron D, et al. Distributed  [21] Abraham D A, Willett P K. Active sonar detection in shal-
                 compressed sensing of jointly sparse signals[C]. ACSSC,  low water using the Page test[J]. IEEE Journal of Oceanic
                 2005: 1537–1541.                                  Engineering, 2002, 27(1): 35–46.
   23   24   25   26   27   28   29   30   31   32   33