Page 225 - 《应用声学》2023年第4期
P. 225

第 42 卷 第 4 期              陈俊羽等: 固液悬浮体系下超声波浓度测量技术进展                                          887


              [9] Bamberger J A, Greenwood M S. Using ultrasonic attenu-  ics, Ferroelectrics, and Frequency Control, 2021, 68(3):
                 ation to monitor slurry mixing in real time[J]. Ultrasonics,  843–853.
                 2004, 42(1): 145–148.                          [21] Zhan X, Yang Y, Liang J, et al.  Temperature effects
             [10] 夏多兵, 苏明旭, 田昌. 非侵入式超声波浆料浓度测量技术研                   and compensation in ultrasonic concentration measure-
                 究 [J]. 应用声学, 2018, 37(6): 843–848.                ment of multicomponent mixture[J]. Sensors and Actua-
                 Xia Duobing, Su Mingxu, Tian Chang. Technology re-  tors A: Physical, 2016, 252: 146–153.
                 search on noninvasive ultrasonic slurry concentration mea-  [22] Zhan X, Yang Y, Liang J, et al. Gas bubble effects and
                 surement[J]. Journal of Applied Acoustics, 2018, 37(6):  elimination in ultrasonic measurement of particle concen-
                 843–848.                                          trations in solid–liquid mixing processes[J]. IEEE Transac-
             [11] 汪建新, 程俊豪. 尾矿浆浓度与超声波衰减系数的关系研                      tions on Instrumentation and Measurement, 2017, 66(7):
                 究 [J]. 工矿自动化, 2020, 46(2): 45–49.                 1711–1718.
                 Wang Jianxin, Cheng Junhao. Research on relationship  [23] Zhan X, Jiang S, Yang Y, et al. Inline measurement of
                 between tailing slurry concentration and ultrasonic atten-  particle concentrations in multicomponent suspensions us-
                 uation coefficient[J]. Journal of Mine Automation, 2020,  ing ultrasonic sensor and least squares support vector ma-
                 46(2): 45–49.                                     chines[J]. Sensors, 2015, 15(9): 24109–24124.
             [12] Stolojanu V, Prakash A. Characterization of slurry sys-  [24] Greenwood M S, Mai J L, Good M S. Attenuation mea-
                 tems by ultrasonic techniques[J]. Chemical Engineering  surements of ultrasound in a kaolin–water slurry: a linear
                 Journal, 2001, 84(3): 215–222.                    dependence upon frequency[J]. The Journal of the Acous-
             [13] McClements D J. Ultrasonic determination of depletion  tical Society of America, 1993, 94(2): 908–916.
                 flocculation in oil-in-water emulsions containing a non-  [25] Greenwood M S, Adamson J D, Bamberger J A. Long-
                 ionic surfactant[J]. Colloids and Surfaces A: Physicochem-  path measurements of ultrasonic attenuation and velocity
                 ical and Engineering Aspects, 1994, 90(1): 25–35.  for very dilute slurries and liquids and detection of con-
             [14] Kim J, Ha K, Kim J, et al. Sound speed change with con-  taminates[J]. Ultrasonics, 2006, 44: e461–e466.
                 centration in nano particle suspension[C]//Proceedings  [26] Geier D, Heermann K, Hussein M, et al.  Effects of
                 of the 2016 IEEE International Ultrasonics Symposium  yeast and maltose concentration on ultrasonic velocity
                 (IUS), F 18–21 Sept. 2016, 2016.                  and attenuation coefficient and its application for process
             [15] 陈燕, 林兴国, 李明, 等. 厚度模压电超声换能器无源声学材                  monitoring[J]. Engineering in Life Sciences, 2014, 14(4):
                 料研究进展 [J]. 应用声学, 2022, 41(3): 490–502.            433–441.
                 Chen Yan, Lin Xingguo, Li Ming, et al. Research progress  [27] Krause D, Hussein W B, Hussein M A, et al. Ultrasonic
                 of passive acoustic materials for thickness-mode piezoelec-  sensor for predicting sugar concentration using multivari-
                 tric ultrasonic transducers[J]. Journal of Applied Acous-  ate calibration[J]. Ultrasonics, 2014, 54(6): 1703–1712.
                 tics, 2022, 41(3): 490–502                     [28] Greenwood M S. Design of ultrasonic attenuation sen-
             [16] 张曦, 章兰珠. 声发射衰减特性管道泄漏定位方法 [J]. 应用声                sor with focused transmitter for density measurements of
                 学, 2022, 41(1): 158–167.                          a slurry in a large steel pipeline[J]. The Journal of the
                 Zhang Xi, Zhang Lanzhu.  The pipeline leakage loca-  Acoustical Society of America, 2015, 138(6): 3846–3854.
                 tion method based on acoustic emission attenuation char-  [29] Greenwood M S. Attenuation measurements with ultra-
                 acteristics[J]. Journal of Applied Acoustics, 2022, 41(1):  sonic diffraction grating show dependence upon particle
                 158–167.                                          size of slurry and viscosity of base liquid[J]. Ultrasonics,
             [17] 盛斯雨, 郭微, 付金山, 等. 快速正交搜索算法在水声信号处                  2018, 84: 134–149.
                 理中的应用 [J]. 应用声学, 2019, 38(4): 712–719.         [30] Kang H S, Lee J Y, Choi S, et al.  Smart manufac-
                 Sheng Siyu, Guo Wei, Fu Jinshan, et al. Application of  turing: past research, present findings, and future di-
                 fast orthogonal search algorithm in underwater acoustic  rections[J]. International Journal of Precision Engineer-
                 signal processing[J]. Journal of Applied Acoustics, 2019,  ing and Manufacturing-Green Technology, 2016, 3(1):
                 38(4): 712–719.                                   111–128.
             [18] Gu J, Fan F, Li Y, et al. Modeling and prediction of ultra-  [31] Zhong R Y, Xu X, Klotz E, et al. Intelligent manufactur-
                 sonic attenuations in liquid–solid dispersions containing  ing in the context of industry 4.0: a review[J]. Engineer-
                 mixed particles with Monte Carlo method[J]. Particuol-  ing, 2017, 3(5): 616–630.
                 ogy, 2019, 43: 84–91.                          [32] Bowler A L, Bakalis S, Watson N J. A review of in-line
             [19] Huang B, Fan F, Li Y, et al. Numerical prediction of  and on-line measurement techniques to monitor industrial
                 ultrasonic attenuation in concentrated emulsions and sus-  mixing processes[J]. Chemical Engineering Research and
                 pensions using Monte Carlo method[J]. Ultrasonics, 2019,  Design, 2020, 153(C): 463–495.
                 94: 218–226.                                   [33] Wang M, Tan C, Dong F, et al.  Quantitative sound
             [20] Yu H, Tan C, Dong F. Measurement of particle concen-  velocity reconstruction based on ultrasonic tomogra-
                 tration by multifrequency ultrasound attenuation in liq-  phy[C]//Proceedings of the 2021 IEEE International In-
                 uid–solid dispersion[J]. IEEE Transactions on Ultrason-  strumentation and Measurement Technology Conference
   220   221   222   223   224   225   226   227   228   229   230