Page 225 - 《应用声学》2023年第4期
P. 225
第 42 卷 第 4 期 陈俊羽等: 固液悬浮体系下超声波浓度测量技术进展 887
[9] Bamberger J A, Greenwood M S. Using ultrasonic attenu- ics, Ferroelectrics, and Frequency Control, 2021, 68(3):
ation to monitor slurry mixing in real time[J]. Ultrasonics, 843–853.
2004, 42(1): 145–148. [21] Zhan X, Yang Y, Liang J, et al. Temperature effects
[10] 夏多兵, 苏明旭, 田昌. 非侵入式超声波浆料浓度测量技术研 and compensation in ultrasonic concentration measure-
究 [J]. 应用声学, 2018, 37(6): 843–848. ment of multicomponent mixture[J]. Sensors and Actua-
Xia Duobing, Su Mingxu, Tian Chang. Technology re- tors A: Physical, 2016, 252: 146–153.
search on noninvasive ultrasonic slurry concentration mea- [22] Zhan X, Yang Y, Liang J, et al. Gas bubble effects and
surement[J]. Journal of Applied Acoustics, 2018, 37(6): elimination in ultrasonic measurement of particle concen-
843–848. trations in solid–liquid mixing processes[J]. IEEE Transac-
[11] 汪建新, 程俊豪. 尾矿浆浓度与超声波衰减系数的关系研 tions on Instrumentation and Measurement, 2017, 66(7):
究 [J]. 工矿自动化, 2020, 46(2): 45–49. 1711–1718.
Wang Jianxin, Cheng Junhao. Research on relationship [23] Zhan X, Jiang S, Yang Y, et al. Inline measurement of
between tailing slurry concentration and ultrasonic atten- particle concentrations in multicomponent suspensions us-
uation coefficient[J]. Journal of Mine Automation, 2020, ing ultrasonic sensor and least squares support vector ma-
46(2): 45–49. chines[J]. Sensors, 2015, 15(9): 24109–24124.
[12] Stolojanu V, Prakash A. Characterization of slurry sys- [24] Greenwood M S, Mai J L, Good M S. Attenuation mea-
tems by ultrasonic techniques[J]. Chemical Engineering surements of ultrasound in a kaolin–water slurry: a linear
Journal, 2001, 84(3): 215–222. dependence upon frequency[J]. The Journal of the Acous-
[13] McClements D J. Ultrasonic determination of depletion tical Society of America, 1993, 94(2): 908–916.
flocculation in oil-in-water emulsions containing a non- [25] Greenwood M S, Adamson J D, Bamberger J A. Long-
ionic surfactant[J]. Colloids and Surfaces A: Physicochem- path measurements of ultrasonic attenuation and velocity
ical and Engineering Aspects, 1994, 90(1): 25–35. for very dilute slurries and liquids and detection of con-
[14] Kim J, Ha K, Kim J, et al. Sound speed change with con- taminates[J]. Ultrasonics, 2006, 44: e461–e466.
centration in nano particle suspension[C]//Proceedings [26] Geier D, Heermann K, Hussein M, et al. Effects of
of the 2016 IEEE International Ultrasonics Symposium yeast and maltose concentration on ultrasonic velocity
(IUS), F 18–21 Sept. 2016, 2016. and attenuation coefficient and its application for process
[15] 陈燕, 林兴国, 李明, 等. 厚度模压电超声换能器无源声学材 monitoring[J]. Engineering in Life Sciences, 2014, 14(4):
料研究进展 [J]. 应用声学, 2022, 41(3): 490–502. 433–441.
Chen Yan, Lin Xingguo, Li Ming, et al. Research progress [27] Krause D, Hussein W B, Hussein M A, et al. Ultrasonic
of passive acoustic materials for thickness-mode piezoelec- sensor for predicting sugar concentration using multivari-
tric ultrasonic transducers[J]. Journal of Applied Acous- ate calibration[J]. Ultrasonics, 2014, 54(6): 1703–1712.
tics, 2022, 41(3): 490–502 [28] Greenwood M S. Design of ultrasonic attenuation sen-
[16] 张曦, 章兰珠. 声发射衰减特性管道泄漏定位方法 [J]. 应用声 sor with focused transmitter for density measurements of
学, 2022, 41(1): 158–167. a slurry in a large steel pipeline[J]. The Journal of the
Zhang Xi, Zhang Lanzhu. The pipeline leakage loca- Acoustical Society of America, 2015, 138(6): 3846–3854.
tion method based on acoustic emission attenuation char- [29] Greenwood M S. Attenuation measurements with ultra-
acteristics[J]. Journal of Applied Acoustics, 2022, 41(1): sonic diffraction grating show dependence upon particle
158–167. size of slurry and viscosity of base liquid[J]. Ultrasonics,
[17] 盛斯雨, 郭微, 付金山, 等. 快速正交搜索算法在水声信号处 2018, 84: 134–149.
理中的应用 [J]. 应用声学, 2019, 38(4): 712–719. [30] Kang H S, Lee J Y, Choi S, et al. Smart manufac-
Sheng Siyu, Guo Wei, Fu Jinshan, et al. Application of turing: past research, present findings, and future di-
fast orthogonal search algorithm in underwater acoustic rections[J]. International Journal of Precision Engineer-
signal processing[J]. Journal of Applied Acoustics, 2019, ing and Manufacturing-Green Technology, 2016, 3(1):
38(4): 712–719. 111–128.
[18] Gu J, Fan F, Li Y, et al. Modeling and prediction of ultra- [31] Zhong R Y, Xu X, Klotz E, et al. Intelligent manufactur-
sonic attenuations in liquid–solid dispersions containing ing in the context of industry 4.0: a review[J]. Engineer-
mixed particles with Monte Carlo method[J]. Particuol- ing, 2017, 3(5): 616–630.
ogy, 2019, 43: 84–91. [32] Bowler A L, Bakalis S, Watson N J. A review of in-line
[19] Huang B, Fan F, Li Y, et al. Numerical prediction of and on-line measurement techniques to monitor industrial
ultrasonic attenuation in concentrated emulsions and sus- mixing processes[J]. Chemical Engineering Research and
pensions using Monte Carlo method[J]. Ultrasonics, 2019, Design, 2020, 153(C): 463–495.
94: 218–226. [33] Wang M, Tan C, Dong F, et al. Quantitative sound
[20] Yu H, Tan C, Dong F. Measurement of particle concen- velocity reconstruction based on ultrasonic tomogra-
tration by multifrequency ultrasound attenuation in liq- phy[C]//Proceedings of the 2021 IEEE International In-
uid–solid dispersion[J]. IEEE Transactions on Ultrason- strumentation and Measurement Technology Conference