Page 159 - 《应用声学)》2023年第5期
P. 159
第 42 卷 第 5 期 杨昱皞等: 时频特征的海豚发声端点检测方法研究 1051
text to train time-domain echolocation click detectors[J]. Wang Chen, Tao Yi, Wu Jianming. Automatice recogni-
The Journal of the Acoustical Society of America, 2021, tion of Sousa chinensis echolocation signal[J]. Technical
149(5): 3301–3310. Acoustics, 2020, 39(4): 425–429.
[14] Gillespie D, Caillat M, Gordon J, et al. Automatic de- [18] 罗思洋, 龙华, 邵玉斌, 等. 噪声环境下多特征融合的语音
tection and classification of odontocete whistles[J]. The 端点检测方法 [J]. 云南大学学报 (自然科学版), 2021, 43(4):
Journal of the Acoustical Society of America, 2013, 134(3): 671–680.
2427–2437. [19] 蒋杨杨. 基于被动声学的低空目标识别系统研究 [D]. 西安:
[15] Miller B S, Gillespie D, Weatherup G, et al. Software 长安大学, 2021.
for the localisation of baleen whale calls using DIFAR [20] 王静宇, 张纯, 许枫. 复杂环境下基于听觉子带能量特征的鸟
sonobuoys: PAMGuard DIFAR[J]. Computer Science, 鸣声端点检测 [J]. 计算机应用, 2022, 42(S1): 310–315.
2014: SC/65b/SH06. Wang Jingyu, Zhang Chun, Xu Feng. Endpoint detection
[16] Frasier K E. A machine learning pipeline for classifica- of bird sound in complex environment based on auditory
tion of cetacean echolocation clicks in large underwater sub-band energy frature[J]. Journal of Computer Applica-
acoustic datasets[J]. PLoS Computational Biology, 2021, tions, 2022, 42(S1): 310–315.
17(12): e1009613. [21] Harma A. Automatic identification of bird species based
[17] 王宸, 陶毅, 吴剑明. 中华白海豚回声定位信号自动识别 [J]. on sinusoidal modeling of syllables[C]//IEEE Interna-
声学技术, 2020, 39(4): 425–429. tional Conference on Acoustics. IEEE, 2003.