Page 122 - 《应用声学》2024年第1期
P. 122

118                                                                                  2024 年 1 月


             算法和 MUSIC 算法,本文算法均能保证更精确稳                             Wang Weitong, Yang Jian, Guo Xiaoran, et al. Signal
             健的定位性能。                                               parameter estimation of orthogonal dipole array based on
                                                                   compressed sensing[J]. Chinese Journal of Ship Research,
                 (3) 实验环境下对不同工况的气体泄漏源进行
                                                                   2022, 17(1): 221–226, 234.
             定位均可以得到较为准确的结果,且总定位误差始                              [8] 韦娟, 郑柳青, 郑浩南, 等. 气体泄漏声源的时域压缩波达方
             终小于 3.5 。证明了本文算法在实际工程应用中的                             向估计研究 [J]. 振动与冲击, 2019, 38(17): 165–171.
                      ◦
             准确性与有效性。                                              Wei Juan, Zheng Liuqing, Zheng Haonan, et al. Estima-
                                                                   tion of direction of reach of compressed wave in time do-
                                                                   main for gas leakage sound source[J]. Journal of Vibration
                                                                   and Shock, 2019, 38(17): 165–171.
                            参 考     文   献                        [9] Eret P, Meskell C. Microphone arrays as a leakage detec-
                                                                   tion tool in industrial compressed air systems[J]. Advances
              [1] 韩鹏程, 燕群, 彭涛, 等. 卷积神经网络在气体泄漏超声识别                  in Acoustics and Vibration, 2012, 2012(Pt 2): 1–10.
                 中的应用 [J]. 应用声学, 2022, 41(4): 602–609.          [10] Bian X, Zhang Y, Li Y, et al. A new method of using sen-
                 Han Pengcheng, Yan Qun, Peng Tao, et al. Application of  sor arrays for gas leakage location based on correlation of
                 convolutional neural network in ultrasonic recognition of  the time-space domain of continuous ultrasound[J]. Sen-
                 gas leakage[J]. Journal of Applied Acoustics, 2022, 41(4):  sors, 2015, 15(4): 8266–8283.
                 602–609.                                       [11] Yan Y, Shen Y, Cui X, et al. Localization of multiple leak
              [2] Gao F, Lin J, Ge Y, et al. A mechanism and method  sources using acoustic emission sensors based on MUSIC
                 of leak detection for pressure vessel: whether, when, and  algorithm and wavelet packet analysis[J]. IEEE Sensors
                 how[J]. IEEE Transactions on Instrumentation and Mea-  Journal, 2018, 18(23): 9812–9820.
                 surement, 2020, 69(9): 6004–6015.              [12] El-Chami Z, A Guérin, Pham D T, et al.  A phase-
              [3] 李磊, 刘庆辉, 杨宽, 等. 基于超声波虚拟相控阵列的气体泄                  based dual microphone method to count and locate au-
                 漏成像方法 [J]. 传感技术学报, 2019, 32(5): 676–680.          dio sources in reverberant rooms[C]// IEEE Workshop on
                 Li Lei, Liu Qinghui, Yang Kuan, et al. Gas leakage imag-  Applications of Signal Processing to Audio & Acoustics.
                 ing method based on ultrasonic virtual phased array[J].  IEEE, 2009.
                 Chinese Journal of Sensors and Actuators, 2019, 32(5):  [13] Blandin C, Ozerov A, Vincent E. Multi-source TDOA es-
                 676–680.                                          timation in reverberant audio using angular spectra and
              [4] 刘敏, 曾毓敏, 张铭, 等. 基于二次相关的语音信号时延估计                  clustering[J]. Signal Processing, 2012, 92(8): 1950–1960.
                 改进算法 [J]. 应用声学, 2016, 35(3): 255–264.          [14] 张自嘉, 李贺, 花晓蕾, 等. 基于波束形成算法的声源定位与
                 Liu Min, Zeng Yumin, Zhang Ming, et al.  Im-      DSP 实现 [J]. 压电与声光, 2015, 37(1): 117–121.
                 proved speech signal delay estimation algorithm based  Zhang Zijia, Li He, Hua Xiaolei, et al. Sound source loca-
                 on quadratic correlation[J]. Journal of Applied Acoustics,  tion and DSP implementation based on beamforming al-
                 2016, 35(3): 255–264.                             gorithm[J]. Piezoelectricity & AcoustoOptics, 2015, 37(1):
              [5] 李鹏, 常思婕. 鲸鱼优化算法下气体泄漏源波达方向估计                      117–121.
                 法 [J]. 中国安全科学学报, 2021, 31(3): 19–27.           [15] Yilmaz O, Rickard S. Blind separation of speech mixtures
                 Li Peng, Chang Sijie. Estimation method of gas leakage  via time- frequency masking[J]. IEEE Transactions on Sig-
                 source direction based on whale optimization algorithm[J].  nal Processing, 2004, 52(7): 1830–1847.
                 China Safety Science Journal, 2021, 31(3): 19–27.  [16] Reju V G, Koh S N, Soon I Y. Underdetermined convo-
              [6] 肖栋, 向阳, 卓瑞岩, 等. 基于波束形成的多类型多声源定位                  lutive blind source separation via time–frequency mask-
                 研究 [J]. 应用声学, 2017, 36(3): 220–227.               ing[J]. IEEE Transactions on Audio Speech & Language
                 Xiao Dong, Xiang Yang, Zhuo Ruiyan, et al. Research on  Processing, 2009, 18(1): 101–116.
                 multi-type and multi-source localization based on beam-  [17] Steckel J, Peremans H. Ultrasound-based air leak detec-
                 forming[J]. Journal of Applied Acoustics, 2017, 36(3):  tion using a random microphone array and sparse repre-
                 220–227.                                          sentations[C]// Sensors. IEEE, 2014.
              [7] 王炜彤, 杨健, 郭晓冉, 等. 基于压缩感知的正交偶极子阵列信              [18] 但佳壁. 汽车排气外声场可视化方法研究 [D]. 北京: 清华大
                 号参数估计 [J]. 中国舰船研究, 2022, 17(1): 221–226, 234.     学, 2017.
   117   118   119   120   121   122   123   124   125   126   127