Page 14 - 《应用声学》2025年第1期
P. 14

10                                                                                   2025 年 1 月


             上引入 ABH 设计,扩大了声空化区域并增强了辐                            [6] Safari A, Zhou Q F, Zeng Y S, et al. Advances in develop-
             射强度,极大地提高了声处理效率。总结 ABH结构                              ment of Pb-free piezoelectric materials for transducer ap-
                                                                   plications[J]. Japanese Journal of Applied Physics, 2023,
             在功率超声领域的应用优势,主要有以下几点:
                                                                   62: SJ0801.
                 (1) 局部的振动增强功能可以解决大部分功率                          [7] Lee H J, Zhang S J, Bar-Cohen Y, et al. High temper-
             超声振动系统的振动能力不足的问题,实现小功率                                ature, high power piezoelectric composite transducers[J].
                                                                   Sensors, 2014, 14(8): 14526–14552.
             输入但大性能输出以解决目前大功率超声电源设
                                                                 [8] Zhang S J, Li F, Jiang X N, et al. Advantages and chal-
             计难题;                                                  lenges of relaxor-PbTiO 3 ferroelectric crystals for elec-
                 (2) 弯曲波传播速度的降低可以使弯曲振幅获                            troacoustic transducers—A review[J]. Progress in Mate-
             得更多的放大时间,实现振动的短距离强放大以解                                rials Science, 2015, 68: 1–66.
                                                                 [9] Liu Y C, Hafezi M, Feeney A. A cascaded Nitinol Langevin
             决目前功率超声振动系统小型化带来的性能损失                                 transducer for resonance stability at elevated tempera-
             问题;                                                   tures[J]. Ultrasonics, 2024, 137: 107201.
                 (3) 弯曲波数的增加可以大幅增加功率超声振                         [10] 林书玉, 鲜小军. 功率超声换能振动系统的优化设计及其研
                                                                   究进展 [J]. 陕西师范大学学报 (自然科学版), 2014, 42(6):
             动系统的声辐射范围,伴随着振幅的累积放大以实
                                                                   31–39.
             现多维度高效声处理。                                            Lin Shuyu, Xian Xiaojun. Progress and optimization de-
                 需要特别强调的是,目前在医学微创手术和生                              sign of high power piezoelectric ceramic ultrasonic vibrat-
             物细胞处理等一些领域,对功率超声器件小型化的                                ing system[J]. Journal of Shaanxi Normal University (Nat-
                                                                   ural Science Edition), 2014, 42(6): 31–39.
             需求非常突出。传统功率超声振动系统的设计频率                             [11] 林书玉. 超声换能器的原理及设计 [M]. 北京: 科学出版社,
             较低,因此大多数设计均为细长杆结构,存在振动控                               2004: 91–111.
             制困难、灵活性有限、成本高、人为操作易疲劳等缺                            [12] Lin S Y. Analysis of multifrequency Langevin composite
                                                                   ultrasonic transducers[J]. IEEE Transactions on Ultrason-
             点。另一方面,小型化带来的压电陶瓷体积以及增
                                                                   ics, Ferroelectrics, and Frequency Control, 2009, 56(9):
             益结构 (如变幅杆) 的减少势必会导致器件的振动                              1990–1998.
             能力下降。因此,解决小型化给功率超声振动器件                             [13] Lin S Y. Analysis of the sandwich piezoelectric ultrasonic
                                                                   transducer in coupled vibration[J]. The Journal of the
             带来的性能损失问题已成为目前亟需解决的技术
                                                                   Acoustical Society of America, 2005, 117(2): 653–661.
             挑战。从实用性和经济性角度来看,具备声波短距                             [14] 林书玉. 夹心式功率超声压电陶瓷换能器的工程设计 [J]. 声
             离放大能力的 ABH 结构有可能为解决这一问题提                              学技术, 2006, 25(2): 160–164.
                                                                   Lin Shuyu. Design of sandwich piezoelectric ceramic ul-
             供最佳解决方案。
                                                                   trasonic transducer[J]. Technical Acoustics, 2006, 25(2):
                                                                   160–164.
                            参 考     文   献                       [15] Xu L, Liu S Q, Xu P, et al. The vibrational properties
                                                                   of the high power ultrasonic focused radiator with rod-
                                                                   like and tubular structures in a composite vibration[J].
              [1] 程建春, 李晓东, 杨军. 声学学科现状以及未来发展趋势 [M].
                                                                   Applied Acoustics, 2015, 87: 72–82.
                 北京: 科学出版社, 2021: 280–283.
              [2] 林书玉. 超声技术的基石: 超声换能器的原理及设计 [J]. 物              [16] Xu L, Lin S Y, Hu W X. Optimization design of high
                 理, 2009, 38(3): 141–148.                          power ultrasonic circular ring radiator in coupled vibra-
                 Lin Shuyu. Foundations of ultrasonic technology—The  tion[J]. Ultrasonics, 2011, 51(7): 815–823.
                 theory and design of ultrasonic transducers[J]. Physics,  [17] Oh B, Kim C, Lee D, et al. An improved analytic model
                 2009, 38(3): 141–148.                             for designing the polymer-composite stepped-plate trans-
              [3] Yao Y, Pan Y, Liu S Q. Power ultrasound and its applica-  ducer using the modified Mindlin plate theory[J]. Ultra-
                 tions: A state-of-the-art review[J]. Ultrasonics Sonochem-  sonics, 2023, 131: 106933.
                 istry, 2020, 62: 104722.                       [18] Lin S Y, Hua T, Hu J, et al. High power ultrasonic ra-
              [4] Harvey G, Gachagan A, Mutasa T. Review of high-  diator in liquid[J]. Acta Acustica United with Acustica,
                 power ultrasound-industrial applications and measure-  2011, 97(4): 544–552.
                 ment methods[J]. IEEE Transactions on Ultrasonics, Fer-  [19] Zhang H D, Xu L, Zhou G P, et al. Research on vibration
                 roelectrics, and Frequency Control, 2014, 61(3): 481–495.  characteristics of the longitudinal-radial composite piezo-
              [5] Gallego-Juárez J A, Rodriguez G, Acosta V, et al. Power  electric ultrasonic transducer[J]. Applied Acoustics, 2023,
                 ultrasonic transducers with extensive radiators for in-  206: 109299.
                 dustrial processing[J]. Ultrasonics Sonochemistry, 2010,  [20] Tsujino J, Ueoka T. Configurations of large capacity ul-
                 17(6): 953–964.                                   trasonic complex vibration sources[C]//2002 IEEE Ultra-
   9   10   11   12   13   14   15   16   17   18   19