Page 14 - 《应用声学》2025年第1期
P. 14
10 2025 年 1 月
上引入 ABH 设计,扩大了声空化区域并增强了辐 [6] Safari A, Zhou Q F, Zeng Y S, et al. Advances in develop-
射强度,极大地提高了声处理效率。总结 ABH结构 ment of Pb-free piezoelectric materials for transducer ap-
plications[J]. Japanese Journal of Applied Physics, 2023,
在功率超声领域的应用优势,主要有以下几点:
62: SJ0801.
(1) 局部的振动增强功能可以解决大部分功率 [7] Lee H J, Zhang S J, Bar-Cohen Y, et al. High temper-
超声振动系统的振动能力不足的问题,实现小功率 ature, high power piezoelectric composite transducers[J].
Sensors, 2014, 14(8): 14526–14552.
输入但大性能输出以解决目前大功率超声电源设
[8] Zhang S J, Li F, Jiang X N, et al. Advantages and chal-
计难题; lenges of relaxor-PbTiO 3 ferroelectric crystals for elec-
(2) 弯曲波传播速度的降低可以使弯曲振幅获 troacoustic transducers—A review[J]. Progress in Mate-
得更多的放大时间,实现振动的短距离强放大以解 rials Science, 2015, 68: 1–66.
[9] Liu Y C, Hafezi M, Feeney A. A cascaded Nitinol Langevin
决目前功率超声振动系统小型化带来的性能损失 transducer for resonance stability at elevated tempera-
问题; tures[J]. Ultrasonics, 2024, 137: 107201.
(3) 弯曲波数的增加可以大幅增加功率超声振 [10] 林书玉, 鲜小军. 功率超声换能振动系统的优化设计及其研
究进展 [J]. 陕西师范大学学报 (自然科学版), 2014, 42(6):
动系统的声辐射范围,伴随着振幅的累积放大以实
31–39.
现多维度高效声处理。 Lin Shuyu, Xian Xiaojun. Progress and optimization de-
需要特别强调的是,目前在医学微创手术和生 sign of high power piezoelectric ceramic ultrasonic vibrat-
物细胞处理等一些领域,对功率超声器件小型化的 ing system[J]. Journal of Shaanxi Normal University (Nat-
ural Science Edition), 2014, 42(6): 31–39.
需求非常突出。传统功率超声振动系统的设计频率 [11] 林书玉. 超声换能器的原理及设计 [M]. 北京: 科学出版社,
较低,因此大多数设计均为细长杆结构,存在振动控 2004: 91–111.
制困难、灵活性有限、成本高、人为操作易疲劳等缺 [12] Lin S Y. Analysis of multifrequency Langevin composite
ultrasonic transducers[J]. IEEE Transactions on Ultrason-
点。另一方面,小型化带来的压电陶瓷体积以及增
ics, Ferroelectrics, and Frequency Control, 2009, 56(9):
益结构 (如变幅杆) 的减少势必会导致器件的振动 1990–1998.
能力下降。因此,解决小型化给功率超声振动器件 [13] Lin S Y. Analysis of the sandwich piezoelectric ultrasonic
transducer in coupled vibration[J]. The Journal of the
带来的性能损失问题已成为目前亟需解决的技术
Acoustical Society of America, 2005, 117(2): 653–661.
挑战。从实用性和经济性角度来看,具备声波短距 [14] 林书玉. 夹心式功率超声压电陶瓷换能器的工程设计 [J]. 声
离放大能力的 ABH 结构有可能为解决这一问题提 学技术, 2006, 25(2): 160–164.
Lin Shuyu. Design of sandwich piezoelectric ceramic ul-
供最佳解决方案。
trasonic transducer[J]. Technical Acoustics, 2006, 25(2):
160–164.
参 考 文 献 [15] Xu L, Liu S Q, Xu P, et al. The vibrational properties
of the high power ultrasonic focused radiator with rod-
like and tubular structures in a composite vibration[J].
[1] 程建春, 李晓东, 杨军. 声学学科现状以及未来发展趋势 [M].
Applied Acoustics, 2015, 87: 72–82.
北京: 科学出版社, 2021: 280–283.
[2] 林书玉. 超声技术的基石: 超声换能器的原理及设计 [J]. 物 [16] Xu L, Lin S Y, Hu W X. Optimization design of high
理, 2009, 38(3): 141–148. power ultrasonic circular ring radiator in coupled vibra-
Lin Shuyu. Foundations of ultrasonic technology—The tion[J]. Ultrasonics, 2011, 51(7): 815–823.
theory and design of ultrasonic transducers[J]. Physics, [17] Oh B, Kim C, Lee D, et al. An improved analytic model
2009, 38(3): 141–148. for designing the polymer-composite stepped-plate trans-
[3] Yao Y, Pan Y, Liu S Q. Power ultrasound and its applica- ducer using the modified Mindlin plate theory[J]. Ultra-
tions: A state-of-the-art review[J]. Ultrasonics Sonochem- sonics, 2023, 131: 106933.
istry, 2020, 62: 104722. [18] Lin S Y, Hua T, Hu J, et al. High power ultrasonic ra-
[4] Harvey G, Gachagan A, Mutasa T. Review of high- diator in liquid[J]. Acta Acustica United with Acustica,
power ultrasound-industrial applications and measure- 2011, 97(4): 544–552.
ment methods[J]. IEEE Transactions on Ultrasonics, Fer- [19] Zhang H D, Xu L, Zhou G P, et al. Research on vibration
roelectrics, and Frequency Control, 2014, 61(3): 481–495. characteristics of the longitudinal-radial composite piezo-
[5] Gallego-Juárez J A, Rodriguez G, Acosta V, et al. Power electric ultrasonic transducer[J]. Applied Acoustics, 2023,
ultrasonic transducers with extensive radiators for in- 206: 109299.
dustrial processing[J]. Ultrasonics Sonochemistry, 2010, [20] Tsujino J, Ueoka T. Configurations of large capacity ul-
17(6): 953–964. trasonic complex vibration sources[C]//2002 IEEE Ultra-