Page 15 - 《应用声学》2025年第1期
P. 15
第 44 卷 第 1 期 陈诚等: 声黑洞功率超声振动系统的研究 11
sonics Symposium, 2002: 703–706. with acoustic black hole for acoustic emission signal en-
[21] Khmelev V N, Shalunov A V, Nesterov V A. Summation hancement and its performance[J]. Ultrasonics, 2024, 138:
of high-frequency Langevin transducers vibrations for in- 107260.
creasing of ultrasonic radiator power[J]. Ultrasonics, 2021, [35] Deng J, Zheng L, Guasch O. Elliptical acoustic black holes
114: 106413. for flexural wave lensing in plates[J]. Applied Acoustics,
[22] Pan Y Z, Mo X P, Chai Y, et al. A new design on broad- 2021, 174: 107744.
band flextensional transducer[J]. Applied Acoustics, 2011, [36] Liu P Z, Tian Z H, Yang K C, et al. Acoustofluidic
72(11): 836–840. black holes for multifunctional in-droplet particle manip-
[23] 杜耀东, 许龙, 周光平. 二维正交复合夹心式压电环形换能 ulation[J]. Science Advances, 2022, 8(13): eabm2592.
器的振动特性 [J]. 中国科学: 物理学 力学 天文学, 2021, [37] Liu P Z, Huang H Y, Wang X, et al. Acoustic black
51(11): 96–105. hole profiles for high-performance ultrasonic tweezers[J].
Du Yaodong, Xu Long, Zhou Guangping. Vibration Mechanical Systems and Signal Processing, 2023, 188:
characteristics of two-dimensional orthogonal compos- 109991.
ite sandwich piezoelectric circular transducer[J]. Scientia [38] Käfer M, Dohnal F, Goettgens V, et al. Experimen-
Sinica (Physica, Mechanica & Astronomica), 2021, 51(11): tal verification of additively manufactured stacked multi-
96–105. wedge acoustic black holes in beams for low frequency[J].
[24] Feng H R, Wang J N, Wang L, et al. Study on a novel om- Mechanical Systems and Signal Processing, 2024, 208:
nidirectional ultrasonic cavitation removal system for Mi- 111065.
crocystis aeruginosa[J]. Ultrasonics Sonochemistry, 2022, [39] Deng J, Gao N S. Broadband vibroacoustic reduction for
86: 106008. a circular beam coupled with a curved acoustic black hole
[25] Chen C, Dong Y L, Wang S, et al. Multi-mode coupled via nullspace method[J]. International Journal of Mechan-
vibration performance analysis of a radial-longitudinal (R- ical Sciences, 2022, 233: 107641.
L) ultrasonic transducer[J]. The Journal of the Acoustical [40] Zhou T, Cheng L. Planar swirl-shaped acoustic black hole
Society of America, 2022, 151(4): 2712–2722. absorbers for multi-directional vibration suppression[J].
[26] Lin S Y, Xu L, Hu W X. A new type of high power com- Journal of Sound and Vibration, 2022, 516: 116500.
posite ultrasonic transducer[J]. Journal of Sound and Vi- [41] Lee J Y, Jeon W. Wave-based analysis of the cut-on fre-
bration, 2011, 330(7): 1419–1431. quency of curved acoustic black holes[J]. Journal of Sound
[27] Chen C, Guo J Z, Lin S Y. Multi-mode coupled vibration and Vibration, 2021, 492: 115731.
analysis and radiation sound field investigation of a novel [42] 刘洋, 陈诚, 林书玉. 基于声黑洞设计理论的径向夹心式径 -弯
multidirectional piezoelectric ultrasonic transducer[J]. Ul- 复合换能器 [J]. 物理学报, 2024, 73(8): 148–157.
trasonics, 2024, 138: 107248. Liu Yang, Chen Cheng, Lin Shuyu. Radial sandwich
[28] Gao N S, Guo X Y, Deng J, et al. Elastic wave modu- radial-bending composite transducer designed based on
lation of double-leaf ABH beam embedded mass oscilla- acoustic black hole theory[J]. Acta Physica Sinica, 2024,
tor[J]. Applied Acoustics, 2021, 173: 107694. 73(8): 148–157.
[29] Deng J, Gao N S, Chen X, et al. Evanescent waves in [43] 高南沙, 张智成, 王谦, 等. 声学黑洞研究进展与应用 [J]. 科
a metabeam attached with lossy acoustic black hole pil- 学通报, 2022, 67(12): 1203–1213.
lars[J]. Mechanical Systems and Signal Processing, 2023, Gao Nansha, Zhang Zhicheng, Wang Qian, et al. Progress
191: 110182. and applications of acoustic black holes[J]. Chinese Sci-
[30] Mi Y Z, Zhai W, Cheng L, et al. Wave trapping by acous- ence Bulletin, 2022, 67(12): 1203–1213.
tic black hole: Simultaneous reduction of sound reflec- [44] Pelat A, Gautier F, Conlon S C, et al. The acoustic black
tion and transmission[J]. Applied Physics Letters, 2021, hole: A review of theory and applications[J]. Journal of
118(11): 114101. Sound and Vibration, 2020, 476: 115316.
[31] Zhang L F, Tang X, Qin Z Y, et al. Vibro-impact energy [45] Krylov V. Acoustic black holes: Recent developments in
harvester for low frequency vibration enhanced by acous- the theory and applications[J]. IEEE Transactions on Ul-
tic black hole[J]. Applied Physics Letters, 2022, 121(1): trasonics, Ferroelectrics, and Frequency Control, 2014,
013902. 61(8): 1296–1306.
[32] Zhao L X, Conlon S C, Semperlotti F. Broadband energy [46] Sun D, Zhou Z Y, Liu Y H, et al. Development and appli-
harvesting using acoustic black hole structural tailoring[J]. cation of ultrasonic surgical instruments[J]. IEEE Trans-
Smart Material Structures, 2014, 23(6): 065021. actions on Bio-Medical Engineering, 1997, 44(6): 462–467.
[33] Xie M X, Gao F W, Zhang P, et al. Study on the influence [47] Schafer M E. Characterization of ultrasound surgical de-
factors on harvesting capacity of a piezoelectric vibration vices[J]. IEEE Transactions on Ultrasonics, Ferroelectrics,
energy harvesting system covered on curved beam with and Frequency Control, 2022, 70(2): 147–163.
acoustic black hole[J]. Shock and Vibration, 2023, 2023: [48] Li J H, Dong X Y, Zhang G H, et al. An enhanced
6604388. hemostatic ultrasonic scalpel based on the longitudinal-
[34] Fu J, He T, Liu Z Y, et al. A novel waveguide rod torsional vibration mode[J]. IEEE Access, 2021, 9: 10951–