Page 15 - 《应用声学》2025年第1期
P. 15

第 44 卷 第 1 期                  陈诚等: 声黑洞功率超声振动系统的研究                                            11


                 sonics Symposium, 2002: 703–706.                  with acoustic black hole for acoustic emission signal en-
             [21] Khmelev V N, Shalunov A V, Nesterov V A. Summation  hancement and its performance[J]. Ultrasonics, 2024, 138:
                 of high-frequency Langevin transducers vibrations for in-  107260.
                 creasing of ultrasonic radiator power[J]. Ultrasonics, 2021,  [35] Deng J, Zheng L, Guasch O. Elliptical acoustic black holes
                 114: 106413.                                      for flexural wave lensing in plates[J]. Applied Acoustics,
             [22] Pan Y Z, Mo X P, Chai Y, et al. A new design on broad-  2021, 174: 107744.
                 band flextensional transducer[J]. Applied Acoustics, 2011,  [36] Liu P Z, Tian Z H, Yang K C, et al.  Acoustofluidic
                 72(11): 836–840.                                  black holes for multifunctional in-droplet particle manip-
             [23] 杜耀东, 许龙, 周光平. 二维正交复合夹心式压电环形换能                    ulation[J]. Science Advances, 2022, 8(13): eabm2592.
                 器的振动特性 [J]. 中国科学: 物理学 力学 天文学, 2021,            [37] Liu P Z, Huang H Y, Wang X, et al. Acoustic black
                 51(11): 96–105.                                   hole profiles for high-performance ultrasonic tweezers[J].
                 Du Yaodong, Xu Long, Zhou Guangping.  Vibration   Mechanical Systems and Signal Processing, 2023, 188:
                 characteristics of two-dimensional orthogonal compos-  109991.
                 ite sandwich piezoelectric circular transducer[J]. Scientia  [38] Käfer M, Dohnal F, Goettgens V, et al.  Experimen-
                 Sinica (Physica, Mechanica & Astronomica), 2021, 51(11):  tal verification of additively manufactured stacked multi-
                 96–105.                                           wedge acoustic black holes in beams for low frequency[J].
             [24] Feng H R, Wang J N, Wang L, et al. Study on a novel om-  Mechanical Systems and Signal Processing, 2024, 208:
                 nidirectional ultrasonic cavitation removal system for Mi-  111065.
                 crocystis aeruginosa[J]. Ultrasonics Sonochemistry, 2022,  [39] Deng J, Gao N S. Broadband vibroacoustic reduction for
                 86: 106008.                                       a circular beam coupled with a curved acoustic black hole
             [25] Chen C, Dong Y L, Wang S, et al. Multi-mode coupled  via nullspace method[J]. International Journal of Mechan-
                 vibration performance analysis of a radial-longitudinal (R-  ical Sciences, 2022, 233: 107641.
                 L) ultrasonic transducer[J]. The Journal of the Acoustical  [40] Zhou T, Cheng L. Planar swirl-shaped acoustic black hole
                 Society of America, 2022, 151(4): 2712–2722.      absorbers for multi-directional vibration suppression[J].
             [26] Lin S Y, Xu L, Hu W X. A new type of high power com-  Journal of Sound and Vibration, 2022, 516: 116500.
                 posite ultrasonic transducer[J]. Journal of Sound and Vi-  [41] Lee J Y, Jeon W. Wave-based analysis of the cut-on fre-
                 bration, 2011, 330(7): 1419–1431.                 quency of curved acoustic black holes[J]. Journal of Sound
             [27] Chen C, Guo J Z, Lin S Y. Multi-mode coupled vibration  and Vibration, 2021, 492: 115731.
                 analysis and radiation sound field investigation of a novel  [42] 刘洋, 陈诚, 林书玉. 基于声黑洞设计理论的径向夹心式径 -弯
                 multidirectional piezoelectric ultrasonic transducer[J]. Ul-  复合换能器 [J]. 物理学报, 2024, 73(8): 148–157.
                 trasonics, 2024, 138: 107248.                     Liu Yang, Chen Cheng, Lin Shuyu.  Radial sandwich
             [28] Gao N S, Guo X Y, Deng J, et al. Elastic wave modu-  radial-bending composite transducer designed based on
                 lation of double-leaf ABH beam embedded mass oscilla-  acoustic black hole theory[J]. Acta Physica Sinica, 2024,
                 tor[J]. Applied Acoustics, 2021, 173: 107694.     73(8): 148–157.
             [29] Deng J, Gao N S, Chen X, et al. Evanescent waves in  [43] 高南沙, 张智成, 王谦, 等. 声学黑洞研究进展与应用 [J]. 科
                 a metabeam attached with lossy acoustic black hole pil-  学通报, 2022, 67(12): 1203–1213.
                 lars[J]. Mechanical Systems and Signal Processing, 2023,  Gao Nansha, Zhang Zhicheng, Wang Qian, et al. Progress
                 191: 110182.                                      and applications of acoustic black holes[J]. Chinese Sci-
             [30] Mi Y Z, Zhai W, Cheng L, et al. Wave trapping by acous-  ence Bulletin, 2022, 67(12): 1203–1213.
                 tic black hole: Simultaneous reduction of sound reflec-  [44] Pelat A, Gautier F, Conlon S C, et al. The acoustic black
                 tion and transmission[J]. Applied Physics Letters, 2021,  hole: A review of theory and applications[J]. Journal of
                 118(11): 114101.                                  Sound and Vibration, 2020, 476: 115316.
             [31] Zhang L F, Tang X, Qin Z Y, et al. Vibro-impact energy  [45] Krylov V. Acoustic black holes: Recent developments in
                 harvester for low frequency vibration enhanced by acous-  the theory and applications[J]. IEEE Transactions on Ul-
                 tic black hole[J]. Applied Physics Letters, 2022, 121(1):  trasonics, Ferroelectrics, and Frequency Control, 2014,
                 013902.                                           61(8): 1296–1306.
             [32] Zhao L X, Conlon S C, Semperlotti F. Broadband energy  [46] Sun D, Zhou Z Y, Liu Y H, et al. Development and appli-
                 harvesting using acoustic black hole structural tailoring[J].  cation of ultrasonic surgical instruments[J]. IEEE Trans-
                 Smart Material Structures, 2014, 23(6): 065021.   actions on Bio-Medical Engineering, 1997, 44(6): 462–467.
             [33] Xie M X, Gao F W, Zhang P, et al. Study on the influence  [47] Schafer M E. Characterization of ultrasound surgical de-
                 factors on harvesting capacity of a piezoelectric vibration  vices[J]. IEEE Transactions on Ultrasonics, Ferroelectrics,
                 energy harvesting system covered on curved beam with  and Frequency Control, 2022, 70(2): 147–163.
                 acoustic black hole[J]. Shock and Vibration, 2023, 2023:  [48] Li J H, Dong X Y, Zhang G H, et al.  An enhanced
                 6604388.                                          hemostatic ultrasonic scalpel based on the longitudinal-
             [34] Fu J, He T, Liu Z Y, et al.  A novel waveguide rod  torsional vibration mode[J]. IEEE Access, 2021, 9: 10951–
   10   11   12   13   14   15   16   17   18   19   20