Page 266 - 《应用声学》2025年第1期
P. 266

262                                                                                  2025 年 1 月


              [5] Liao G, Luan C, Wang Z, et al. Acoustic metamaterials: A  ing a periodic array of beam-like resonators[J]. Journal of
                 review of theories, structures, fabrication approaches, and  Physics D: Applied Physics, 2014, 47(4): 045307.
                 applications[J]. Advanced Materials Technologies, 2021,  [20] Zhang Z, Wang X, Liu Z Y, et al. A study of low fre-
                 6(5): 2000787.                                    quency sound insulation mechanism of a perforated plate-
              [6] Yu D, Liu Y, Zhao H, et al. Flexural vibration band gaps  type acoustic metamaterial[J]. Journal of Sound and Vi-
                 in Euler-Bernoulli beams with locally resonant structures  bration, 2023, 558: 117775.
                 with two degrees of freedom[J]. Physical Review B, 2006,  [21] Li J, Jiang R, Xu D, et al. Study of acoustic transmission
                 73(6): 064301.                                    losses in particle-reinforced rubber-based membrane-type
              [7] 郁殿龙, 刘耀宗, 王刚, 等. 一维杆状结构声子晶体扭转振动带                 acoustic metamaterials[J]. Applied Acoustics, 2023, 208:
                 隙研究 [J]. 振动与冲击, 2006(1): 104–106, 170.            109379.
                 Yu Dianlong, Liu Yaozong, Wang Gang, et al.  Re-  [22] 陈传敏, 乔钏熙, 郭兆枫, 等. 半主动式薄膜型声学超材料超
                 search on torsional vibration band gaps of one dimensional  低频隔声特性研究 [J]. 噪声与振动控制, 2023, 43(3): 60–65.
                 phononic crystals composed of rod structures[J]. Journal  Chen Chuanmin, Qiao Chuanxi, Guo Zhaofeng, et al.
                 of Vibration and Shock, 2006(1): 104–106, 170.    Study on ultra-low frequency sound insulation character-
              [8] Zhang Z, Wang H, Yang C, et al. Vibration energy har-  istics of semi-active membrane type acoustic metamateri-
                 vester based on bilateral periodic one-dimensional acous-  als[J]. Noise and Vibration Control, 2023, 43(3): 60–65.
                 tic black hole[J]. Applied Sciences, 2023, 13(11): 6423.  [23] Peng L, Bao B. Optimized membrane-type acoustic meta-
              [9] Chen H, Zeng H, Ding C, et al. Double-negative acous-  materials for alleviating engineering fatigue damage via
                 tic metamaterial based on hollow steel tube meta-atom[J].  lightweight optimization[J]. Engineering Structures, 2023,
                 Journal of Applied Physics, 2013, 113(10): 104902.  292: 116550.
             [10] Zhai S, Chen H, Ding C, et al. Double-negative acous-  [24] Duan H, Yang F, Shen X, et al. Acoustic metamaterials
                 tic metamaterial based on meta-molecule[J]. Journal of  for low-frequency noise reduction based on parallel con-
                 Physics D: Applied Physics, 2013, 46(47): 475105.  nection of multiple spiral chambers[J]. Materials, 2022,
             [11] Zeng H C, Luo C R, Chen H J, et al. Flute-model acoustic  15(11): 3882.
                 metamaterials with simultaneously negative bulk modulus  [25] Yang X, Tang S, Shen X, et al. Research on the sound in-
                 and mass density[J]. Solid State Communications, 2013,  sulation performance of composite rubber reinforced with
                 173: 14–18.                                       hollow glass microsphere based on acoustic finite element
             [12] Liang Z, Li J. Extreme acoustic metamaterial by coil-  simulation[J]. Polymers, 2023, 15(3): 611.
                 ing up space[J]. Physical Review Letters, 2012, 108(11):  [26] 冯涛, 王余华, 王晶, 等. 结构型声学超材料研究及应用进
                 114301.                                           展 [J]. 振动与冲击, 2021, 40(20): 150–157.
             [13] Xie Y, Popa B I, Zigoneanu L, et al. Measurement of  Feng Tao, Wang Yuhua, Wang Jing, et al. Progress in
                 a broadband negative index with space-coiling acoustic  research and application of structural acoustic metama-
                 metamaterials[J]. Physical Review Letters, 2013, 110(17):  terials[J]. Journal of Vibration and Shock, 2021, 40(20):
                 175501.                                           150–157.
             [14] Ghaffarivardavagh R, Nikolajczyk J, Glynn Holt R, et al.  [27] 祁鹏山, 杜军, 姜久龙, 等. 双局域共振机制声子晶体带隙特
                 Horn-like space-coiling metamaterials toward simultane-  性研究 [J]. 材料导报, 2016, 30(10): 144–147.
                 ous phase and amplitude modulation[J]. Nature Commu-  Qi Pengshan, Du Jun, Jiang Jiulong, et al. Study on
                 nications, 2018, 9(1): 1349.                      the phononic crystals bandgap properties of double local
             [15] Theocharis G, Richoux O, García V R, et al. Limits of  resonance mechanism[J]. Materials Review, 2016, 30(10):
                 slow sound propagation and transparency in lossy, locally  144–147.
                 resonant periodic structures[J]. New Journal of Physics,  [28] 姬艳露, 吕海峰, 刘继宾. 表面张力对薄膜型声学超材料隔声
                 2014, 16(9): 093017.                              性能的影响 [J]. 功能材料, 2019, 50(1): 1120–1125.
             [16] Zhao X, Cai L, Yu D, et al. A low frequency acoustic in-  Ji Yanlu, Lyu Haifeng, Liu Jibin. Effect of surface ten-
                 sulator by using the acoustic metasurface to a Helmholtz  sion on acoustic insulation performance of membrane-type
                 resonator[J]. AIP Advances, 2017, 7(6): 065211.   acoustic metamaterials[J]. Journal of Functional Materi-
             [17] Nguyen H, Wu Q, Xu X, et al.  Broadband acoustic  als, 2019, 50(1): 1120–1125.
                 silencer with ventilation based on slit-type Helmholtz  [29] 袁伟, 胡超楠, 林国昌, 等. 薄膜声学超材料低频隔声研究 [J].
                 resonators[J]. Applied Physics Letters, 2020, 117(13):  机械设计与制造工程, 2021, 50(3): 113–117.
                 134103.                                           Yuan Wei, Hu Chaonan, Lin Guochang, et al. Research
             [18] Oudich M, Senesi M, Assouar M B, et al. Experimen-  on low frequency sound insulation of thin film acoustic
                 tal evidence of locally resonant sonic band gap in two-  metamaterials[J]. Machine Design and Manufacturing En-
                 dimensional phononic stubbed plates[J]. Physical Review  gineering, 2021, 50(3): 113–117.
                 B, 2011, 84(16): 165136.                       [30] Thongchom C, Jearsiripongkul T, Refahati N, et al.
             [19] Xiao Y, Wen J, Huang L, et al. Analysis and experimen-  Sound transmission loss of a honeycomb sandwich cylin-
                 tal realization of locally resonant phononic plates carry-  drical shell with functionally graded porous layers[J].
   261   262   263   264   265   266   267   268   269   270