Page 266 - 《应用声学》2025年第1期
P. 266
262 2025 年 1 月
[5] Liao G, Luan C, Wang Z, et al. Acoustic metamaterials: A ing a periodic array of beam-like resonators[J]. Journal of
review of theories, structures, fabrication approaches, and Physics D: Applied Physics, 2014, 47(4): 045307.
applications[J]. Advanced Materials Technologies, 2021, [20] Zhang Z, Wang X, Liu Z Y, et al. A study of low fre-
6(5): 2000787. quency sound insulation mechanism of a perforated plate-
[6] Yu D, Liu Y, Zhao H, et al. Flexural vibration band gaps type acoustic metamaterial[J]. Journal of Sound and Vi-
in Euler-Bernoulli beams with locally resonant structures bration, 2023, 558: 117775.
with two degrees of freedom[J]. Physical Review B, 2006, [21] Li J, Jiang R, Xu D, et al. Study of acoustic transmission
73(6): 064301. losses in particle-reinforced rubber-based membrane-type
[7] 郁殿龙, 刘耀宗, 王刚, 等. 一维杆状结构声子晶体扭转振动带 acoustic metamaterials[J]. Applied Acoustics, 2023, 208:
隙研究 [J]. 振动与冲击, 2006(1): 104–106, 170. 109379.
Yu Dianlong, Liu Yaozong, Wang Gang, et al. Re- [22] 陈传敏, 乔钏熙, 郭兆枫, 等. 半主动式薄膜型声学超材料超
search on torsional vibration band gaps of one dimensional 低频隔声特性研究 [J]. 噪声与振动控制, 2023, 43(3): 60–65.
phononic crystals composed of rod structures[J]. Journal Chen Chuanmin, Qiao Chuanxi, Guo Zhaofeng, et al.
of Vibration and Shock, 2006(1): 104–106, 170. Study on ultra-low frequency sound insulation character-
[8] Zhang Z, Wang H, Yang C, et al. Vibration energy har- istics of semi-active membrane type acoustic metamateri-
vester based on bilateral periodic one-dimensional acous- als[J]. Noise and Vibration Control, 2023, 43(3): 60–65.
tic black hole[J]. Applied Sciences, 2023, 13(11): 6423. [23] Peng L, Bao B. Optimized membrane-type acoustic meta-
[9] Chen H, Zeng H, Ding C, et al. Double-negative acous- materials for alleviating engineering fatigue damage via
tic metamaterial based on hollow steel tube meta-atom[J]. lightweight optimization[J]. Engineering Structures, 2023,
Journal of Applied Physics, 2013, 113(10): 104902. 292: 116550.
[10] Zhai S, Chen H, Ding C, et al. Double-negative acous- [24] Duan H, Yang F, Shen X, et al. Acoustic metamaterials
tic metamaterial based on meta-molecule[J]. Journal of for low-frequency noise reduction based on parallel con-
Physics D: Applied Physics, 2013, 46(47): 475105. nection of multiple spiral chambers[J]. Materials, 2022,
[11] Zeng H C, Luo C R, Chen H J, et al. Flute-model acoustic 15(11): 3882.
metamaterials with simultaneously negative bulk modulus [25] Yang X, Tang S, Shen X, et al. Research on the sound in-
and mass density[J]. Solid State Communications, 2013, sulation performance of composite rubber reinforced with
173: 14–18. hollow glass microsphere based on acoustic finite element
[12] Liang Z, Li J. Extreme acoustic metamaterial by coil- simulation[J]. Polymers, 2023, 15(3): 611.
ing up space[J]. Physical Review Letters, 2012, 108(11): [26] 冯涛, 王余华, 王晶, 等. 结构型声学超材料研究及应用进
114301. 展 [J]. 振动与冲击, 2021, 40(20): 150–157.
[13] Xie Y, Popa B I, Zigoneanu L, et al. Measurement of Feng Tao, Wang Yuhua, Wang Jing, et al. Progress in
a broadband negative index with space-coiling acoustic research and application of structural acoustic metama-
metamaterials[J]. Physical Review Letters, 2013, 110(17): terials[J]. Journal of Vibration and Shock, 2021, 40(20):
175501. 150–157.
[14] Ghaffarivardavagh R, Nikolajczyk J, Glynn Holt R, et al. [27] 祁鹏山, 杜军, 姜久龙, 等. 双局域共振机制声子晶体带隙特
Horn-like space-coiling metamaterials toward simultane- 性研究 [J]. 材料导报, 2016, 30(10): 144–147.
ous phase and amplitude modulation[J]. Nature Commu- Qi Pengshan, Du Jun, Jiang Jiulong, et al. Study on
nications, 2018, 9(1): 1349. the phononic crystals bandgap properties of double local
[15] Theocharis G, Richoux O, García V R, et al. Limits of resonance mechanism[J]. Materials Review, 2016, 30(10):
slow sound propagation and transparency in lossy, locally 144–147.
resonant periodic structures[J]. New Journal of Physics, [28] 姬艳露, 吕海峰, 刘继宾. 表面张力对薄膜型声学超材料隔声
2014, 16(9): 093017. 性能的影响 [J]. 功能材料, 2019, 50(1): 1120–1125.
[16] Zhao X, Cai L, Yu D, et al. A low frequency acoustic in- Ji Yanlu, Lyu Haifeng, Liu Jibin. Effect of surface ten-
sulator by using the acoustic metasurface to a Helmholtz sion on acoustic insulation performance of membrane-type
resonator[J]. AIP Advances, 2017, 7(6): 065211. acoustic metamaterials[J]. Journal of Functional Materi-
[17] Nguyen H, Wu Q, Xu X, et al. Broadband acoustic als, 2019, 50(1): 1120–1125.
silencer with ventilation based on slit-type Helmholtz [29] 袁伟, 胡超楠, 林国昌, 等. 薄膜声学超材料低频隔声研究 [J].
resonators[J]. Applied Physics Letters, 2020, 117(13): 机械设计与制造工程, 2021, 50(3): 113–117.
134103. Yuan Wei, Hu Chaonan, Lin Guochang, et al. Research
[18] Oudich M, Senesi M, Assouar M B, et al. Experimen- on low frequency sound insulation of thin film acoustic
tal evidence of locally resonant sonic band gap in two- metamaterials[J]. Machine Design and Manufacturing En-
dimensional phononic stubbed plates[J]. Physical Review gineering, 2021, 50(3): 113–117.
B, 2011, 84(16): 165136. [30] Thongchom C, Jearsiripongkul T, Refahati N, et al.
[19] Xiao Y, Wen J, Huang L, et al. Analysis and experimen- Sound transmission loss of a honeycomb sandwich cylin-
tal realization of locally resonant phononic plates carry- drical shell with functionally graded porous layers[J].