Page 267 - 《应用声学》2025年第1期
P. 267
第 44 卷 第 1 期 伍守豪等: 薄膜型声学超材料的发展与展望 263
Buildings, 2022, 12(2): 151. soundproofing: Combining membrane and locally reso-
[31] Hashimoto N, Katsura M, Yasuoka M, et al. Sound in- nant structure[J]. International Journal of Mechanical Sci-
sulation of a rectangular thin membrane with additional ences, 2023, 256: 108500.
weights[J]. Applied Acoustics, 1991, 33(1): 21–43. [45] Peng W, Zhang J, Shi M, et al. Low-frequency sound
[32] Hashimoto N, Katsura M, Nishikawa Y, et al. Experimen- insulation optimisation design of membrane-type acoustic
tal study on sound insulation of membranes with small metamaterials based on Kriging surrogate model[J]. Ma-
weights for application to membrane structures[J]. Ap- terials & Design, 2023, 225: 111491.
plied Acoustics, 1996, 48(1): 71–84. [46] Yang Z, Dai H M, Chan N H, et al. Acoustic meta-
[33] Yang Z, Mei J, Yang M, et al. Membrane-type acous- material panels for sound attenuation in the 50–1000 Hz
tic metamaterial with negative dynamic mass[J]. Physical regime[J]. Applied Physics Letters, 2010, 96(4): 041906.
Review Letters, 2008, 101(20): 204301. [47] Naify C J, Chang C M, McKnight G, et al. Transmis-
sion loss of membrane-type acoustic metamaterials with
[34] Mei J, Ma G, Yang M, et al. Dark acoustic metamateri-
als as super absorbers for low-frequency sound[J]. Nature coaxial ring masses[J]. Journal of Applied Physics, 2011,
Communications, 2012, 3: 756–756. 110(12): 124903.
[48] Naify C J, Chang C M, McKnight G, et al. Membrane-
[35] Naify C J, Chang C M, McKnight G, et al. Transmis-
type metamaterials: Transmission loss of multi-celled
sion loss and dynamic response of membrane-type locally
arrays[J]. Journal of Applied Physics, 2011, 109(10):
resonant acoustic metamaterials[J]. Journal of Applied
104902.
Physics, 2010, 108(11): 114905.
[49] Naify C J, Chang C M, McKnight G, et al. Scaling of
[36] Ma F, Wu J H, Huang M, et al. A purely flexi-
membrane-type locally resonant acoustic metamaterial ar-
ble lightweight membrane-type acoustic metamaterial[J].
rays[J]. The Journal of the Acoustical Society of America,
Journal of Physics D: Applied Physics, 2015, 48(17):
2012, 132(4): 2784–2792.
175105.
[50] Zhang Y, Wen J, Zhao H, et al. Sound insulation property
[37] 郭磊, 张均东, 曾鸿. 变厚度薄膜型声学超材料单胞的隔声性
of membrane-type acoustic metamaterials carrying differ-
能数值研究 [J]. 舰船科学技术, 2020, 42(1): 38–42.
ent masses at adjacent cells[J]. Journal of Applied Physics,
Guo Lei, Zhang Jundong, Zeng Hong. The numeri-
2013, 114(6): 063515.
cal study of sound Insulation performance of membrane
[51] Chen J S, Chen Y B, Chen H W, et al. Bandwidth broad-
acoustic metamaterial cell with variable thickness[J]. Ship
ening for transmission loss of acoustic waves using coupled
Science and Technology, 2020, 42(1): 38–42.
membrane-ring structure[J]. Materials Research Express,
[38] 蔡梦娜, 田红艳, 郄彦辉. 非对称双层薄膜型局域共振声子
2016, 3(10): 105801.
晶体低频隔声性能研究 [J]. 噪声与振动控制, 2019, 39(2):
[52] Lu Z, Yu X, Lau S K, et al. Membrane-type acoustic
197–201.
metamaterial with eccentric masses for broadband sound
Cai Mengna, Tian Hongyan, Qie Yanhui. Low-frequency
isolation[J]. Applied Acoustics, 2020, 157: 107003.
sound insulation performance of asymmetric double-
[53] Leblanc A, Lavie A. Three-dimensional-printed
membrane local resonant acoustic metamaterial[J]. Noise
membrane-type acoustic metamaterial for low frequency
and Vibration Control, 2019, 39(2): 197–201.
sound attenuation[J]. The Journal of the Acoustical Soci-
[39] Zhang Y, Wen J, Xiao Y, et al. Theoretical investigation
ety of America, 2017, 141(6): EL538–EL542.
of the sound attenuation of membrane-type acoustic meta-
[54] 邢拓, 李贤徽, 盖晓玲, 等. 附加多质量块的单胞薄膜型声学
materials[J]. Physics Letters A, 2012, 376(17): 1489–1494.
超材料的隔声性能研究 [C]//2016 年全国声学学术会议论文
[40] Tian H, Wang X, Zhou Y. Theoretical model and ana-
集, 2016: 95–98.
lytical approach for a circular membrane-ring structure of [55] Zhou W, Wu B, Muhammad M, et al. Actively tunable
locally resonant acoustic metamaterial[J]. Applied Physics transverse waves in soft membrane-type acoustic meta-
A, 2014, 114(3): 985–990.
materials[J]. Journal of Applied Physics, 2018, 123(16):
[41] Chen Y, Huang G, Zhou X, et al. Analytical coupled 165304.
vibroacoustic modeling of membrane-type acoustic meta- [56] Zhou G, Wu J H, Lu K, et al. Broadband low-frequency
materials: Membrane model[J]. The Journal of the Acous- membrane-type acoustic metamaterials with multi-state
tical Society of America, 2014, 136(3): 969–979. anti-resonances[J]. Applied Acoustics, 2020, 159: 107078.
[42] Langfeldt F, Gleine W, von Estorff O. An efficient analyti- [57] Huang H, Cao E, Zhao M, et al. Spider web-inspired
cal model for baffled, multi-celled membrane-type acoustic lightweight membrane-type acoustic metamaterials for
metamaterial panels[J]. Journal of Sound and Vibration, broadband low-frequency sound isolation[J]. Polymers,
2018, 417: 359–375. 2021, 13(7): 1146.
[43] Li J, Shi Y, Jiang R, et al. Acoustic insulation mechanism [58] Ma G, Yang M, Xiao S, et al. Acoustic metasurface
of membrane-type acoustic metamaterials loaded with ar- with hybrid resonances[J]. Nature Materials, 2014, 13(9):
bitrarily shaped mass blocks of variable surface density[J]. 873–878.
Materials, 2022, 15(4): 1556. [59] Sui N, Yan X, Huang T Y, et al. A lightweight yet
[44] Jang J Y, Song K. Synergistic acoustic metamaterial for sound-proof honeycomb acoustic metamaterial[J]. Applied