Page 267 - 《应用声学》2025年第1期
P. 267

第 44 卷 第 1 期                 伍守豪等: 薄膜型声学超材料的发展与展望                                           263


                 Buildings, 2022, 12(2): 151.                      soundproofing: Combining membrane and locally reso-
             [31] Hashimoto N, Katsura M, Yasuoka M, et al. Sound in-  nant structure[J]. International Journal of Mechanical Sci-
                 sulation of a rectangular thin membrane with additional  ences, 2023, 256: 108500.
                 weights[J]. Applied Acoustics, 1991, 33(1): 21–43.  [45] Peng W, Zhang J, Shi M, et al. Low-frequency sound
             [32] Hashimoto N, Katsura M, Nishikawa Y, et al. Experimen-  insulation optimisation design of membrane-type acoustic
                 tal study on sound insulation of membranes with small  metamaterials based on Kriging surrogate model[J]. Ma-
                 weights for application to membrane structures[J]. Ap-  terials & Design, 2023, 225: 111491.
                 plied Acoustics, 1996, 48(1): 71–84.           [46] Yang Z, Dai H M, Chan N H, et al.  Acoustic meta-
             [33] Yang Z, Mei J, Yang M, et al. Membrane-type acous-  material panels for sound attenuation in the 50–1000 Hz
                 tic metamaterial with negative dynamic mass[J]. Physical  regime[J]. Applied Physics Letters, 2010, 96(4): 041906.
                 Review Letters, 2008, 101(20): 204301.         [47] Naify C J, Chang C M, McKnight G, et al. Transmis-
                                                                   sion loss of membrane-type acoustic metamaterials with
             [34] Mei J, Ma G, Yang M, et al. Dark acoustic metamateri-
                 als as super absorbers for low-frequency sound[J]. Nature  coaxial ring masses[J]. Journal of Applied Physics, 2011,
                 Communications, 2012, 3: 756–756.                 110(12): 124903.
                                                                [48] Naify C J, Chang C M, McKnight G, et al. Membrane-
             [35] Naify C J, Chang C M, McKnight G, et al. Transmis-
                                                                   type metamaterials:  Transmission loss of multi-celled
                 sion loss and dynamic response of membrane-type locally
                                                                   arrays[J]. Journal of Applied Physics, 2011, 109(10):
                 resonant acoustic metamaterials[J]. Journal of Applied
                                                                   104902.
                 Physics, 2010, 108(11): 114905.
                                                                [49] Naify C J, Chang C M, McKnight G, et al. Scaling of
             [36] Ma F, Wu J H, Huang M, et al.  A purely flexi-
                                                                   membrane-type locally resonant acoustic metamaterial ar-
                 ble lightweight membrane-type acoustic metamaterial[J].
                                                                   rays[J]. The Journal of the Acoustical Society of America,
                 Journal of Physics D: Applied Physics, 2015, 48(17):
                                                                   2012, 132(4): 2784–2792.
                 175105.
                                                                [50] Zhang Y, Wen J, Zhao H, et al. Sound insulation property
             [37] 郭磊, 张均东, 曾鸿. 变厚度薄膜型声学超材料单胞的隔声性
                                                                   of membrane-type acoustic metamaterials carrying differ-
                 能数值研究 [J]. 舰船科学技术, 2020, 42(1): 38–42.
                                                                   ent masses at adjacent cells[J]. Journal of Applied Physics,
                 Guo Lei, Zhang Jundong, Zeng Hong.  The numeri-
                                                                   2013, 114(6): 063515.
                 cal study of sound Insulation performance of membrane
                                                                [51] Chen J S, Chen Y B, Chen H W, et al. Bandwidth broad-
                 acoustic metamaterial cell with variable thickness[J]. Ship
                                                                   ening for transmission loss of acoustic waves using coupled
                 Science and Technology, 2020, 42(1): 38–42.
                                                                   membrane-ring structure[J]. Materials Research Express,
             [38] 蔡梦娜, 田红艳, 郄彦辉. 非对称双层薄膜型局域共振声子
                                                                   2016, 3(10): 105801.
                 晶体低频隔声性能研究 [J]. 噪声与振动控制, 2019, 39(2):
                                                                [52] Lu Z, Yu X, Lau S K, et al. Membrane-type acoustic
                 197–201.
                                                                   metamaterial with eccentric masses for broadband sound
                 Cai Mengna, Tian Hongyan, Qie Yanhui. Low-frequency
                                                                   isolation[J]. Applied Acoustics, 2020, 157: 107003.
                 sound insulation performance of asymmetric double-
                                                                [53] Leblanc  A,  Lavie  A.  Three-dimensional-printed
                 membrane local resonant acoustic metamaterial[J]. Noise
                                                                   membrane-type acoustic metamaterial for low frequency
                 and Vibration Control, 2019, 39(2): 197–201.
                                                                   sound attenuation[J]. The Journal of the Acoustical Soci-
             [39] Zhang Y, Wen J, Xiao Y, et al. Theoretical investigation
                                                                   ety of America, 2017, 141(6): EL538–EL542.
                 of the sound attenuation of membrane-type acoustic meta-
                                                                [54] 邢拓, 李贤徽, 盖晓玲, 等. 附加多质量块的单胞薄膜型声学
                 materials[J]. Physics Letters A, 2012, 376(17): 1489–1494.
                                                                   超材料的隔声性能研究 [C]//2016 年全国声学学术会议论文
             [40] Tian H, Wang X, Zhou Y. Theoretical model and ana-
                                                                   集, 2016: 95–98.
                 lytical approach for a circular membrane-ring structure of  [55] Zhou W, Wu B, Muhammad M, et al. Actively tunable
                 locally resonant acoustic metamaterial[J]. Applied Physics  transverse waves in soft membrane-type acoustic meta-
                 A, 2014, 114(3): 985–990.
                                                                   materials[J]. Journal of Applied Physics, 2018, 123(16):
             [41] Chen Y, Huang G, Zhou X, et al. Analytical coupled  165304.
                 vibroacoustic modeling of membrane-type acoustic meta-  [56] Zhou G, Wu J H, Lu K, et al. Broadband low-frequency
                 materials: Membrane model[J]. The Journal of the Acous-  membrane-type acoustic metamaterials with multi-state
                 tical Society of America, 2014, 136(3): 969–979.  anti-resonances[J]. Applied Acoustics, 2020, 159: 107078.
             [42] Langfeldt F, Gleine W, von Estorff O. An efficient analyti-  [57] Huang H, Cao E, Zhao M, et al. Spider web-inspired
                 cal model for baffled, multi-celled membrane-type acoustic  lightweight membrane-type acoustic metamaterials for
                 metamaterial panels[J]. Journal of Sound and Vibration,  broadband low-frequency sound isolation[J]. Polymers,
                 2018, 417: 359–375.                               2021, 13(7): 1146.
             [43] Li J, Shi Y, Jiang R, et al. Acoustic insulation mechanism  [58] Ma G, Yang M, Xiao S, et al.  Acoustic metasurface
                 of membrane-type acoustic metamaterials loaded with ar-  with hybrid resonances[J]. Nature Materials, 2014, 13(9):
                 bitrarily shaped mass blocks of variable surface density[J].  873–878.
                 Materials, 2022, 15(4): 1556.                  [59] Sui N, Yan X, Huang T Y, et al.  A lightweight yet
             [44] Jang J Y, Song K. Synergistic acoustic metamaterial for  sound-proof honeycomb acoustic metamaterial[J]. Applied
   262   263   264   265   266   267   268   269   270