Page 268 - 《应用声学》2025年第1期
P. 268
264 2025 年 1 月
Physics Letters, 2015, 106(17): 171905. Hang Rui, Wu Weiguo, Zeng Tiancheng. Membrane-type
[60] Wang X, Luo X, Zhao H, et al. Acoustic perfect absorp- active acoustic meta-material based on electromagnetic
tion and broadband insulation achieved by double-zero force tuning[J]. Noise and Vibration Control, 2019, 39(6):
metamaterials[J]. Applied Physics Letters, 2018, 112(2): 66–70.
021901. [73] Chen Y, Hu G, Huang G. A hybrid elastic metamate-
[61] 周榕, 吴卫国, 闻轶凡. 一种带薄膜结构的 Helmholtz 腔声学 rial with negative mass density and tunable bending stiff-
超材料 [J]. 声学技术, 2017, 36(4): 297–302. ness[J]. Journal of the Mechanics and Physics of Solids,
Zhou Rong, Wu Weiguo, Wen Yifan. An acoustic meta- 2017, 105: 179–198.
material based on Helmholtz resonator with thin mem- [74] 贺子厚, 赵静波, 姚宏, 等. 基于压电材料的薄膜声学超材料
brane[J]. Technical Acoustics, 2017, 36(4): 297–302. 隔声性能研究 [J]. 物理学报, 2019, 68(13): 134302.
[62] Li H Z, Liu X C, Liu Q, et al. Sound insulation perfor- He Zihou, Zhao Jingbo, Yao Hong, et al. Sound in-
mance of double membrane-type acoustic metamaterials sulation performance of thin-film acoustic metamaterials
combined with a Helmholtz resonator[J]. Applied Acous- based on piezoelectric materials[J]. Acta Physica Sinica,
tics, 2023, 205: 109297. 2019, 68(13): 134302.
[63] Zhang X, Zhang H, Chen Z, et al. Simultaneous realiza- [75] Chen S B, Wen J H, Yu D L, et al. Band gap control
tion of large sound insulation and efficient energy harvest- of phononic beam with negative capacitance piezoelectric
ing with acoustic metamaterial[J]. Smart Materials and shunt[J]. Chinese Physics B, 2011, 20(1): 014301.
Structures, 2018, 27(10): 105018. [76] Zhang H, Wen J, Xiao Y, et al. Sound transmission loss of
[64] Chen J S, Chen Y B, Tsai H J, et al. Membrane-ring metamaterial thin plates with periodic subwavelength ar-
acoustic metamaterials with an orifice[J]. Materials Re- rays of shunted piezoelectric patches[J]. Journal of Sound
search Express, 2019, 6(9): 095802. and Vibration, 2015, 343: 104–120.
[65] Langfeldt F, Riecken J, Gleine W, et al. A membrane- [77] 孙炜海, 张超群, 鞠桂玲, 等. 含磁电弹夹层的压电/压磁声子
type acoustic metamaterial with adjustable acoustic prop- 晶体带隙特性研究 [J]. 物理学报, 2018, 67(19): 194303.
erties[J]. Journal of Sound and Vibration, 2016, 373: 1–18. Sun Weihai, Zhang Chaoqun, Ju Guiling, et al. Band
[66] Langfeldt F, Kemsies H, Gleine W, et al. Perforated gaps of piezoelectric/piezomagnetic phononic crystal with
membrane-type acoustic metamaterials[J]. Physics Let- magneto-electro-elastic interlayer[J]. Acta Physica Sinica,
ters A, 2017, 381(16): 1457–1462. 2018, 67(19): 194303.
[67] Ang L Y L, Koh Y K, Lee H P. Plate-type acoustic meta- [78] Zhao J, Li X, Wang W, et al. Membrane-type acoustic
material with cavities coupled via an orifice for enhanced metamaterials with tunable frequency by a compact mag-
sound transmission loss[J]. Applied Physics Letters, 2018, net[J]. The Journal of the Acoustical Society of America,
112(5): 051903. 2019, 145(5): EL400–EL404.
[68] Xiao S, Ma G, Li Y, et al. Active control of membrane- [79] Li X, Zhao J, Wang W, et al. Tunable acoustic insulation
type acoustic metamaterial by electric field[J]. Applied characteristics of membrane-type acoustic metamaterials
Physics Letters, 2015, 106(9): 091904. array with compact magnets[J]. Applied Acoustics, 2022,
[69] Zhao J, Li X, Wang Y, et al. Membrane acoustic metama- 187: 108514.
terial absorbers with magnetic negative stiffness[J]. The [80] Lin G, Hu C, Cong L, et al. Design and characterization
Journal of the Acoustical Society of America, 2017, 141(2): of tunable three-dimensional acoustic composite meta-
840–846. materials[J]. Pigment & Resin Technology, 2020, 50(5):
[70] Gao N, Hou H, Mu Y. Low frequency acoustic properties 403–411.
of bilayer membrane acoustic metamaterial with magnetic [81] 顾金桃, 王晓乐, 汤又衡, 等. 提高飞机壁板低频宽带隔声的
oscillator[J]. Theoretical and Applied Mechanics Letters, 层合声学超材料 [J]. 航空学报, 2022, 43(1): 355–364.
2017, 7(4): 252–257. Gu Jintao, Wang Xiaole, Tang Youheng, et al. Lami-
[71] Ma G, Fan X, Sheng P, et al. Shaping reverberating sound nated acoustic metamaterial for improving low-frequency
fields with an actively tunable metasurface[J]. Proceedings broadband sound insulation of aircraft wall panels[J]. Acta
of the National Academy of Sciences of the United States Aeronautica et Astronautica Sinica, 2022, 43(1): 355–364.
of America, 2018, 115(26): 6638–6643. [82] Wang X, Zhao H, Luo X, et al. Membrane-constrained
[72] 杭锐, 吴卫国, 曾天成. 基于电磁力调谐的薄膜主动声学超材 acoustic metamaterials for low frequency sound insula-
料 [J]. 噪声与振动控制, 2019, 39(6): 66–70. tion[J]. Applied Physics Letters, 2016, 108(4): 041905.