Page 268 - 《应用声学》2025年第1期
P. 268

264                                                                                  2025 年 1 月


                 Physics Letters, 2015, 106(17): 171905.           Hang Rui, Wu Weiguo, Zeng Tiancheng. Membrane-type
             [60] Wang X, Luo X, Zhao H, et al. Acoustic perfect absorp-  active acoustic meta-material based on electromagnetic
                 tion and broadband insulation achieved by double-zero  force tuning[J]. Noise and Vibration Control, 2019, 39(6):
                 metamaterials[J]. Applied Physics Letters, 2018, 112(2):  66–70.
                 021901.                                        [73] Chen Y, Hu G, Huang G. A hybrid elastic metamate-
             [61] 周榕, 吴卫国, 闻轶凡. 一种带薄膜结构的 Helmholtz 腔声学             rial with negative mass density and tunable bending stiff-
                 超材料 [J]. 声学技术, 2017, 36(4): 297–302.              ness[J]. Journal of the Mechanics and Physics of Solids,
                 Zhou Rong, Wu Weiguo, Wen Yifan. An acoustic meta-  2017, 105: 179–198.
                 material based on Helmholtz resonator with thin mem-  [74] 贺子厚, 赵静波, 姚宏, 等. 基于压电材料的薄膜声学超材料
                 brane[J]. Technical Acoustics, 2017, 36(4): 297–302.  隔声性能研究 [J]. 物理学报, 2019, 68(13): 134302.
             [62] Li H Z, Liu X C, Liu Q, et al. Sound insulation perfor-  He Zihou, Zhao Jingbo, Yao Hong, et al.  Sound in-
                 mance of double membrane-type acoustic metamaterials  sulation performance of thin-film acoustic metamaterials
                 combined with a Helmholtz resonator[J]. Applied Acous-  based on piezoelectric materials[J]. Acta Physica Sinica,
                 tics, 2023, 205: 109297.                          2019, 68(13): 134302.
             [63] Zhang X, Zhang H, Chen Z, et al. Simultaneous realiza-  [75] Chen S B, Wen J H, Yu D L, et al. Band gap control
                 tion of large sound insulation and efficient energy harvest-  of phononic beam with negative capacitance piezoelectric
                 ing with acoustic metamaterial[J]. Smart Materials and  shunt[J]. Chinese Physics B, 2011, 20(1): 014301.
                 Structures, 2018, 27(10): 105018.              [76] Zhang H, Wen J, Xiao Y, et al. Sound transmission loss of
             [64] Chen J S, Chen Y B, Tsai H J, et al. Membrane-ring  metamaterial thin plates with periodic subwavelength ar-
                 acoustic metamaterials with an orifice[J]. Materials Re-  rays of shunted piezoelectric patches[J]. Journal of Sound
                 search Express, 2019, 6(9): 095802.               and Vibration, 2015, 343: 104–120.
             [65] Langfeldt F, Riecken J, Gleine W, et al. A membrane-  [77] 孙炜海, 张超群, 鞠桂玲, 等. 含磁电弹夹层的压电/压磁声子
                 type acoustic metamaterial with adjustable acoustic prop-  晶体带隙特性研究 [J]. 物理学报, 2018, 67(19): 194303.
                 erties[J]. Journal of Sound and Vibration, 2016, 373: 1–18.  Sun Weihai, Zhang Chaoqun, Ju Guiling, et al. Band
             [66] Langfeldt F, Kemsies H, Gleine W, et al.  Perforated  gaps of piezoelectric/piezomagnetic phononic crystal with
                 membrane-type acoustic metamaterials[J]. Physics Let-  magneto-electro-elastic interlayer[J]. Acta Physica Sinica,
                 ters A, 2017, 381(16): 1457–1462.                 2018, 67(19): 194303.
             [67] Ang L Y L, Koh Y K, Lee H P. Plate-type acoustic meta-  [78] Zhao J, Li X, Wang W, et al. Membrane-type acoustic
                 material with cavities coupled via an orifice for enhanced  metamaterials with tunable frequency by a compact mag-
                 sound transmission loss[J]. Applied Physics Letters, 2018,  net[J]. The Journal of the Acoustical Society of America,
                 112(5): 051903.                                   2019, 145(5): EL400–EL404.
             [68] Xiao S, Ma G, Li Y, et al. Active control of membrane-  [79] Li X, Zhao J, Wang W, et al. Tunable acoustic insulation
                 type acoustic metamaterial by electric field[J]. Applied  characteristics of membrane-type acoustic metamaterials
                 Physics Letters, 2015, 106(9): 091904.            array with compact magnets[J]. Applied Acoustics, 2022,
             [69] Zhao J, Li X, Wang Y, et al. Membrane acoustic metama-  187: 108514.
                 terial absorbers with magnetic negative stiffness[J]. The  [80] Lin G, Hu C, Cong L, et al. Design and characterization
                 Journal of the Acoustical Society of America, 2017, 141(2):  of tunable three-dimensional acoustic composite meta-
                 840–846.                                          materials[J]. Pigment & Resin Technology, 2020, 50(5):
             [70] Gao N, Hou H, Mu Y. Low frequency acoustic properties  403–411.
                 of bilayer membrane acoustic metamaterial with magnetic  [81] 顾金桃, 王晓乐, 汤又衡, 等. 提高飞机壁板低频宽带隔声的
                 oscillator[J]. Theoretical and Applied Mechanics Letters,  层合声学超材料 [J]. 航空学报, 2022, 43(1): 355–364.
                 2017, 7(4): 252–257.                              Gu Jintao, Wang Xiaole, Tang Youheng, et al. Lami-
             [71] Ma G, Fan X, Sheng P, et al. Shaping reverberating sound  nated acoustic metamaterial for improving low-frequency
                 fields with an actively tunable metasurface[J]. Proceedings  broadband sound insulation of aircraft wall panels[J]. Acta
                 of the National Academy of Sciences of the United States  Aeronautica et Astronautica Sinica, 2022, 43(1): 355–364.
                 of America, 2018, 115(26): 6638–6643.          [82] Wang X, Zhao H, Luo X, et al. Membrane-constrained
             [72] 杭锐, 吴卫国, 曾天成. 基于电磁力调谐的薄膜主动声学超材                   acoustic metamaterials for low frequency sound insula-
                 料 [J]. 噪声与振动控制, 2019, 39(6): 66–70.               tion[J]. Applied Physics Letters, 2016, 108(4): 041905.
   263   264   265   266   267   268   269   270