Page 182 - 201805
P. 182

764                                                                                  2018 年 9 月


             传感器件,并利用双通道差分振荡器结构对其性能                             [10] Aroutiounian V. Metal oxide hydrogen, oxygen, and car-
             进行了评测,结果显示:掺杂 10% 镍的钯镍合金薄                             bon monoxide sensors for hydrogen setups and cells[J].
                                                                   International Journal of Hydrogen Energy, 2007, 32(9):
             膜在 40 nm 厚度时表现出较快的响应速度 (10 s) 和
                                                                   1145–1158.
             较高检测灵敏度,其检测下限达20 ppm;另外,由于                         [11] Hoffheins B S, Holmes W J, Lauf R J, et al. Development
             钯铜纳米线的大体积面积比以及多孔结构,使传感                                of low cost sensors for hydrogen safety applications[R].
             器响应速度获得大幅提升,针对浓度为 10%、4% 以                            Office of Scientific & Technical Information Technical Re-
                                                                   ports, 2011.
             及0.5%的氢气的响应时间约为2 s。由此可知,通过                         [12] Hughes R C, Schubert W K. Thin films of Pd/Ni alloys
             对钯基气敏材料的特征修饰,将有可能降低传感器                                for detection of high hydrogen concentrations[J]. Journal
             响应速度,提升传感器检测灵敏度,以满足氢能应用                               of Applied Physics, 1992, 71(1): 542–544.
                                                                [13] Ando M. Recent advances in optochemical sensors for the
             中风险防控中的快速高灵敏度的应用需求。
                                                                   detection of H 2 , O 2 , O 3 , CO, CO 2 , and H 2 O in air[J].
                                                                   Trends in Analytical Chemistry, 2006, 25(10): 937–948.
                                                                [14] Butler M A. Micromirror optical-fiber hydrogen sensor[J].
                            参 考     文   献                          Sensors & Actuators B Chemical, 1994, 22(2): 155–163.
                                                                [15] Maciak E, Opilski Z. Transition metal oxides covered Pd
              [1] Hübert T, Boon-Brett L, Black G, et al. Hydrogen sen-  film for optical H 2 gas detection[J]. Thin Solid Films,
                 sors—A review[J]. Sensors & Actuators B Chemical, 2011,  2007, 515(23): 8351–8355.
                 157(2): 329–352.                               [16] Sutapun B, Tabib-Azar M, Kazemi A. Pd-coated elastoop-
              [2] Firth J G, Jones A, Jones T A. The principles of the de-  tic fiber optic Bragg grating sensors for multiplexed hy-
                 tection of flammable atmospheres by catalytic devices[J].  drogen sensing[J]. Sensors & Actuators B Chemical, 1999,
                 Combustion & Flame, 1973, 20(3): 303–311.         60(1): 27–34.
              [3] Lee E B, Hwang I S, Cha J H, et al. Micromachined  [17] D’Amico A, Palma A, Verona E. Hydrogen sensor using
                 catalytic combustible hydrogen gas sensor[J]. Sensors &  a palladium coated surface acoustic wave delay-line[C]//
                 Actuators B Chemical, 2011, 153(2): 392–397.      Ultrasonics Symposium. IEEE, 1982: 308–311.
              [4] Katsuki A, Fukui K. H 2 selective gas sensor based on  [18] Jakubik W P, Urbańczyk M W, Kochowski S, et al. Bi-
                 SnO 2 [J]. Sensors & Actuators B Chemical, 1998, 52(1/2):  layer structure for hydrogen detection in a surface acoustic
                 30–37.                                            wave sensor system[J]. Sensors & Actuators B Chemical,
              [5] Matsumiya M, Qiu F, Shin W, et al. Thin-film Li-doped  2002, 82(2): 265–271.
                 NiO for thermoelectric hydrogen gas sensor[J]. Thin Solid  [19] Yamanaka K, Ishikawa S, Nakaso N, et al. Ultramultiple
                 Films, 2002, 419(1/2): 213–217.                   roundtrips of surface acoustic wave on sphere realizing
              [6] 孙冬梅, 刘林, 徐海滨. 基于微流量热导传感器的氢气浓度检                   innovation of gas sensors[J]. IEEE Transactions on Ultra-
                 测系统研究 [J]. 控制工程, 2011, 18(4): 505–508.            sonics Ferroelectrics & Frequency Control, 2006, 53(4):
                 Sun Dongmei, Liu Lin, Xu Haibin. Hydrogen concentra-  793–801.
                 tion test systems based on thermal conductivity sensor[J].  [20] Lewis F A. Palladium-hydrogen system-2[J]. Platinum
                 Control Engineering of China, 2011, 18(4): 505–508.  Metals Review, 1982, 26(2): 70–78.
              [7] Maget H J R. Electrochemical detection of H 2 , CO, and  [21] Jewell L L, Davis B H. Review of absorption and adsorp-
                 hydrocarbons in inert or oxygen atmospheres[J]. Journal  tion in the hydrogen-palladium system[J]. Applied Catal-
                 of the Electrochemical Society, 1971, 118(3): 506–510.  ysis A General, 2006, 310(1): 1–15.
              [8] Korotcenkov G, Han S D, Stetter J R. ChemInform  [22] Grdeń M, Czerwiński A, Golimowski J, et al. Hydrogen
                 abstract: review of electrochemical hydrogen sensors[J].  electrosorption in Ni-Pd alloys[J]. Journal of Electroana-
                 Cheminform, 2009, 109(3): 1402–1433.              lytical Chemistry, 1999, 460(1/2): 30–37.
              [9] Seiyama T, Kato A, Fujiishi K, et al. A new detector for  [23] Lee E, Lee J M, Lee E, et al. Hydrogen gas sensing per-
                 gaseous components using semiconductive thin films[J].  formance of Pd–Ni alloy thin films[J]. Thin Solid Films,
                 Analytical Chemistry, 2002, 38(8): 1502–1503.     2010, 519(2): 880–884.
   177   178   179   180   181   182   183   184   185   186   187