Page 59 - 201806
P. 59

第 37 卷 第 6 期                                                                        Vol. 37, No.6
             2018 年 11 月                         Journal of Applied Acoustics                 November, 2018


             ⋄ 研究报告 ⋄



                     滚动轴承声信号特征提取和诊断试验研究





                                                        余永增      †


                                          (中国石油兰州石化公司设备维修公司           兰州   730060)

                摘要 为解决振动检测方法不能有效识别低速旋转机械滚动轴承故障问题,利用声发射检测方法,建立了滚
                动轴承低速声发射信号采集试验装置,对模拟人工缺陷滚动轴承声发射信号进行了采集,进而对滚动轴承声
                发射信号进行总体平均经验模式分解,结合能量矩及相关系数法综合判断分解后各模态分量的真伪,据此提
                取出特征信号并做出其局部 Hilbert 边际谱,最后对滚动轴承各种故障模式进行诊断。试验结果表明该诊断方
                法能准确识别滚动轴承声发射信号故障频率,依据特征频率及幅值大小可对低速滚动轴承故障进行有效诊断。
                关键词 滚动轴承,声发射,总体平均经验模式分解,能量矩,Hilbert 边际谱
                中图法分类号: TG115.28           文献标识码: A          文章编号: 1000-310X(2018)06-0889-06
                DOI: 10.11684/j.issn.1000-310X.2018.06.009





                  Experimental research on feature extraction and diagnostics for acoustic

                                        emission signals of rolling bearings



                                                      YU Yongzeng

                     (Petro China Lanzhou Petrochemical Company, Equipment Maintenance Company, Lanzhou 730060, China)

                 Abstract  The acoustic emission method was used to diagnose low-speed rotating mechanical rolling bearing
                 which vibration detection method can not diagnose effectively. An acoustic emission signal acquisition test
                 device with low speed for rolling bearing was established in advance. The acoustic emission signals of the
                 simulated artificial failure bearings were acquired. These signals of rolling bearings were decomposed by
                 ensemble empirical mode decomposition method. Then the reliability of every intrinsic mode function was
                 determined by energy moments and correlation coefficients. Characteristic signals were extracted and made to
                 local Hilbert marginal spectrum. Thus a variety of failure modes of bearing were diagnosed. The experimental
                 results show that this method can accurately identify the fault frequency of the acoustic emission signal of the
                 rolling bearing, and according to the characteristic frequency and amplitude can effectively diagnose the fault
                 of the low-speed rolling bearing.
                 Key words   Rolling bearings, Acoustic emission, Ensemble empirical mode decomposition, Energy moments,
                 Hilbert marginal spectrum




             2018-01-09 收稿; 2018-04-12 定稿
             作者简介: 余永增 (1980- ), 男, 甘肃天水人, 硕士, 研究方向: 旋转设备故障诊断与维修。
             † 通讯作者 E-mail: yuyongzeng@sina.com
   54   55   56   57   58   59   60   61   62   63   64