Page 61 - 201901
P. 61
第 38 卷 第 1 期 毕亚峰等: 基于变换声学的角反射器的设计 57
左侧为入射波束,以10 小角度入射到结构表面,然 acoustics[J]. Journal of Physics D: Applied Physics, 2010,
◦
后经过结构内部将声波引导至右侧,仍然以 10 斜 43(11): 113001.
◦
向左上方传播。对于 1 kHz、2 kHz、3 kHz、4 kHz 的 [9] Popa B I, Zigoneanu L, Cummer S A. Experimental acous-
tic ground cloak in air[J]. Physical Review Letters, 2011,
声波,其反射波都保持回向传播的特点,因此该反 106(25): 253901.
射器在这段频率范围内都能有较好的效果。它的工 [10] Liu R, Ji C, Mock J J, et al. Broadband ground-plane
作频带与图 3 中单元所表现出的稳定区间一致,实 cloak[J]. Science, 2009, 323(5912): 366–369.
[11] Zigoneanu L, Popa B I, Cummer S A. Three-dimensional
际上整体结构是由一系列单元按照特定的方式排
broadband omnidirectional acoustic ground cloak[J]. Na-
布而成的,很显然单元的特点也就决定了反射器的 ture Materials, 2014, 13(4): 352.
特性。在本文中,单元具有宽频且稳定的各向异性 [12] 胡文林, 杨军. 隐声衣结构设计和实验研究新进展 [J]. 应用声
的特点,因此设计的反射器也就相应的能够在宽频、 学, 2013, 32(2): 91–99.
Hu Wenlin, Yang Jun. New development in structure de-
多角度下工作。图 5 中的仿真证明了结构的有效工
sign and experimental study of acoustic cloaking[J]. Jour-
作角度范围,而图 6 中的仿真则验证了结构的宽频 nal of Applied Acoustics, 2013, 32(2): 91–99.
有效性,这与上述结论相符。 [13] Lu W, Jia H, Bi Y, et al. Design and demonstration of an
acoustic right-angle bend[J]. The Journal of the Acousti-
4 结论 cal Society of America, 2017, 142(1): 84–89.
[14] Yang Y, Jia H, Lu W, et al. Impedance-matching acous-
利用变换声学理论,本文提出了一种线性变换 tic bend composed of perforated plates and side pipes[J].
Journal of Applied Physics, 2017, 122(5): 054502.
的声反射器。这种声反射器需要利用密度各向异性 [15] Sun Z, Jia H, Chen Y, et al. Design of an underwa-
的超材料进行实现。结合 Biot 流体理论,本文设计 ter acoustic bend by pentamode metafluid[J]. The Jour-
了一种具有强各向异性的超材料单元,并利用其构 nal of the Acoustical Society of America, 2018, 143(2):
1029–1034.
建了声反射器。仿真实验表明,该反射器可以改变
[16] Climente A, Torrent D, Sanchez-Dehesa J. Sound focusing
反射声波的传播方向,在45 范围内,无论声波从任 by gradient index sonic lenses[J]. Applied Physics Letters,
◦
何角度入射,反射波都会朝入射方向进行回向传播, 2010, 97: 104103.
从而显著增加回波强度。此外,仿真实验同样验证 [17] Zigoneanu L, Popa B I, Cummer S A. Design and measure-
ments of a broadband two-dimensional acoustic lens[J].
了该结构的宽频有效性。基于超材料的声反射器可
Physical Review B, 2011, 84(2): 024305.
调性强,宽频有效,易于安装布放,因此具有较强的 [18] Su X, Norris A N, Cushing C W, et al. Broadband focus-
实用价值。 ing of underwater sound using a transparent pentamode
lens[J]. The Journal of the Acoustical Society of America,
2017, 141(6): 4408–4417.
参 考 文 献 [19] Kong F, Wu B I, Kong J A, et al. Planar focusing antenna
design by using coordinate transformation technology[J].
[1] Ohba Y. On the radiation pattern of a corner reflector Applied Physics Letters, 2007, 91(25): 253509.
finite in width[J]. IEEE Transactions on Antennas and [20] Gallina I, Castaldi G, Galdi V. Transformation media for
Propagation, 1963, 11(2): 127–132. thin planar retrodirective reflectors[J]. IEEE Antennas
[2] Eckhardt H D. Simple model of corner reflector phenom- and Wireless Propagation Letters, 2008, 7: 603–605.
ena[J]. Applied Optics, 1971, 10(7): 1559–1566. [21] Ma Y G, Ong C K, Tyc T, et al. An omnidirectional
[3] Guenneau S, Gralak B, Pendry J B. Perfect corner reflec- retroreflector based on the transmutation of dielectric sin-
tor[J]. Optics Letters, 2005, 30(10): 1204–1206. gularities[J]. Nature Materials, 2009, 8(8): 639–642.
[4] Cummer S A, Schurig D. One path to acoustic cloaking[J]. [22] Luo Y, He L X, Zhu S Z, et al. Flattening of conic reflec-
New Journal of Physics, 2007, 9(3): 45. tors via a transformation method[J]. Physical Review A,
[5] Chen H Y, Chan C T. Acoustic cloaking in three dimen- 2011, 84(2): 023843.
sions using acoustic metamaterials[J]. Applied Physics [23] Xiong S, Feng Y, Jiang T, et al. Designing retrodirective
Letters, 2007, 91(18): 183518. reflector on a planar surface by transformation optics[J].
[6] Torrent D, Sanchez-Dehesa J. Acoustic cloaking in two di- AIP Advances, 2013, 3(1): 012113.
mensions: a feasible approach[J]. New Journal of Physics, [24] Schoenberg M, Sen P N. Properties of a periodically strat-
2008, 10(6): 063015. ified acoustic half-space and its relation to a Biot fluid[J].
[7] Norris A N. Acoustic cloaking theory[J]. Proceedings of The Journal of the Acoustical Society of America, 1983,
the Royal Society of London A: Mathematical, Physi- 73(1): 61–67.
cal and Engineering Sciences. The Royal Society, 2008, [25] Fokin V, Ambati M, Sun C, et al. Method for retrieving
464(2097): 2411–2434. effective properties of locally resonant acoustic metama-
[8] Chen H, Chan C T. Acoustic cloaking and transformation terials[J]. Physical Review B, 2007, 76(14): 144302.