Page 61 - 201901
P. 61

第 38 卷 第 1 期                 毕亚峰等: 基于变换声学的角反射器的设计                                            57


             左侧为入射波束,以10 小角度入射到结构表面,然                              acoustics[J]. Journal of Physics D: Applied Physics, 2010,
                                 ◦
             后经过结构内部将声波引导至右侧,仍然以 10 斜                              43(11): 113001.
                                                       ◦
             向左上方传播。对于 1 kHz、2 kHz、3 kHz、4 kHz 的                 [9] Popa B I, Zigoneanu L, Cummer S A. Experimental acous-
                                                                   tic ground cloak in air[J]. Physical Review Letters, 2011,
             声波,其反射波都保持回向传播的特点,因此该反                                106(25): 253901.
             射器在这段频率范围内都能有较好的效果。它的工                             [10] Liu R, Ji C, Mock J J, et al. Broadband ground-plane
             作频带与图 3 中单元所表现出的稳定区间一致,实                              cloak[J]. Science, 2009, 323(5912): 366–369.
                                                                [11] Zigoneanu L, Popa B I, Cummer S A. Three-dimensional
             际上整体结构是由一系列单元按照特定的方式排
                                                                   broadband omnidirectional acoustic ground cloak[J]. Na-
             布而成的,很显然单元的特点也就决定了反射器的                                ture Materials, 2014, 13(4): 352.
             特性。在本文中,单元具有宽频且稳定的各向异性                             [12] 胡文林, 杨军. 隐声衣结构设计和实验研究新进展 [J]. 应用声
             的特点,因此设计的反射器也就相应的能够在宽频、                               学, 2013, 32(2): 91–99.
                                                                   Hu Wenlin, Yang Jun. New development in structure de-
             多角度下工作。图 5 中的仿真证明了结构的有效工
                                                                   sign and experimental study of acoustic cloaking[J]. Jour-
             作角度范围,而图 6 中的仿真则验证了结构的宽频                              nal of Applied Acoustics, 2013, 32(2): 91–99.
             有效性,这与上述结论相符。                                      [13] Lu W, Jia H, Bi Y, et al. Design and demonstration of an
                                                                   acoustic right-angle bend[J]. The Journal of the Acousti-
             4 结论                                                  cal Society of America, 2017, 142(1): 84–89.
                                                                [14] Yang Y, Jia H, Lu W, et al. Impedance-matching acous-
                 利用变换声学理论,本文提出了一种线性变换                              tic bend composed of perforated plates and side pipes[J].
                                                                   Journal of Applied Physics, 2017, 122(5): 054502.
             的声反射器。这种声反射器需要利用密度各向异性                             [15] Sun Z, Jia H, Chen Y, et al.  Design of an underwa-
             的超材料进行实现。结合 Biot 流体理论,本文设计                            ter acoustic bend by pentamode metafluid[J]. The Jour-
             了一种具有强各向异性的超材料单元,并利用其构                                nal of the Acoustical Society of America, 2018, 143(2):
                                                                   1029–1034.
             建了声反射器。仿真实验表明,该反射器可以改变
                                                                [16] Climente A, Torrent D, Sanchez-Dehesa J. Sound focusing
             反射声波的传播方向,在45 范围内,无论声波从任                              by gradient index sonic lenses[J]. Applied Physics Letters,
                                     ◦
             何角度入射,反射波都会朝入射方向进行回向传播,                               2010, 97: 104103.
             从而显著增加回波强度。此外,仿真实验同样验证                             [17] Zigoneanu L, Popa B I, Cummer S A. Design and measure-
                                                                   ments of a broadband two-dimensional acoustic lens[J].
             了该结构的宽频有效性。基于超材料的声反射器可
                                                                   Physical Review B, 2011, 84(2): 024305.
             调性强,宽频有效,易于安装布放,因此具有较强的                            [18] Su X, Norris A N, Cushing C W, et al. Broadband focus-
             实用价值。                                                 ing of underwater sound using a transparent pentamode
                                                                   lens[J]. The Journal of the Acoustical Society of America,
                                                                   2017, 141(6): 4408–4417.
                            参 考     文   献                       [19] Kong F, Wu B I, Kong J A, et al. Planar focusing antenna
                                                                   design by using coordinate transformation technology[J].
              [1] Ohba Y. On the radiation pattern of a corner reflector  Applied Physics Letters, 2007, 91(25): 253509.
                 finite in width[J]. IEEE Transactions on Antennas and  [20] Gallina I, Castaldi G, Galdi V. Transformation media for
                 Propagation, 1963, 11(2): 127–132.                thin planar retrodirective reflectors[J]. IEEE Antennas
              [2] Eckhardt H D. Simple model of corner reflector phenom-  and Wireless Propagation Letters, 2008, 7: 603–605.
                 ena[J]. Applied Optics, 1971, 10(7): 1559–1566.  [21] Ma Y G, Ong C K, Tyc T, et al. An omnidirectional
              [3] Guenneau S, Gralak B, Pendry J B. Perfect corner reflec-  retroreflector based on the transmutation of dielectric sin-
                 tor[J]. Optics Letters, 2005, 30(10): 1204–1206.  gularities[J]. Nature Materials, 2009, 8(8): 639–642.
              [4] Cummer S A, Schurig D. One path to acoustic cloaking[J].  [22] Luo Y, He L X, Zhu S Z, et al. Flattening of conic reflec-
                 New Journal of Physics, 2007, 9(3): 45.           tors via a transformation method[J]. Physical Review A,
              [5] Chen H Y, Chan C T. Acoustic cloaking in three dimen-  2011, 84(2): 023843.
                 sions using acoustic metamaterials[J]. Applied Physics  [23] Xiong S, Feng Y, Jiang T, et al. Designing retrodirective
                 Letters, 2007, 91(18): 183518.                    reflector on a planar surface by transformation optics[J].
              [6] Torrent D, Sanchez-Dehesa J. Acoustic cloaking in two di-  AIP Advances, 2013, 3(1): 012113.
                 mensions: a feasible approach[J]. New Journal of Physics,  [24] Schoenberg M, Sen P N. Properties of a periodically strat-
                 2008, 10(6): 063015.                              ified acoustic half-space and its relation to a Biot fluid[J].
              [7] Norris A N. Acoustic cloaking theory[J]. Proceedings of  The Journal of the Acoustical Society of America, 1983,
                 the Royal Society of London A: Mathematical, Physi-  73(1): 61–67.
                 cal and Engineering Sciences. The Royal Society, 2008,  [25] Fokin V, Ambati M, Sun C, et al. Method for retrieving
                 464(2097): 2411–2434.                             effective properties of locally resonant acoustic metama-
              [8] Chen H, Chan C T. Acoustic cloaking and transformation  terials[J]. Physical Review B, 2007, 76(14): 144302.
   56   57   58   59   60   61   62   63   64   65   66