Page 69 - 应用声学2019年第2期
P. 69
第 38 卷 第 2 期 关昭等: 基于兰姆波在倾斜镜子基板上的油水微分离实验 215
油水分离位移随着激发电压的增大而减小;在激发 efficiency oil/water separation[J]. Advanced Materials,
电压和基板倾角不变时,油水分离位移随着油水混 2013, 25(30): 4192–4198.
[10] Luo C, Heng X. Separation of oil from a water/oil mixed
合比例的减小而减小;当激发电压和油水混合比例
drop using two nonparallel plates[J]. Langmuir, 2014,
不变时,油水分离位移随着基板倾角的增大而减小。 30(33): 10002–10010.
通过比较图像可知,当油水混合液滴在较大的基板 [11] Zhang Q D, Liu N, Cao Y Z, et al. A facile method
to prepare dual-functional membrane for efficient oil re-
倾角、较大的激发电压以及较小的油水混合比例的
moval and in situ reversible mercury ions adsorption from
情况下,油水分离位移减小。 wastewater[J]. Applied Surface Science, 2018, 434: 57–62.
所得出的理论关系为油水混合液滴分离提供 [12] He K, Duan H, Chen G, et al. Cleaning of oil fouling
with water enabled by zwitterionic polyelectrolyte coat-
了充分的条件。实验中,尽管只利用了橄榄油和水
ings: overcoming the imperative challenge of oil-water sep-
这两种不相溶合的代表性液体,探究了油水分离位 aration membranes[J]. ACS Nano, 2015, 9(9): 9188–9198.
移实验的特性,但是,利用兰姆波装置分离油水混合 [13] Wen Q, Di J, Jiang L, et al. Zeolite-coated mesh film for
efficient oil-water separation[J]. Chemical Science, 2013,
液滴的方法,可以被应用到其他非压电基板上,为实 4(2): 591–595.
现分离其他两种不相溶混合液体提供技术支持。 [14] Liu M, Hou Y, Li J, et al. stable superwetting meshes for
on-demand separation of immiscible oil/water mixtures
and emulsions[J]. Langmuir, 2017, 33(15): 3702–3710.
参 考 文 献 [15] Xiao Z, Zhang M, Fan W, et al. Highly efficient oil/water
separation and trace organic contaminants removal based
on superhydrophobic conjugated microporous polymer
[1] Nordvik A B, Simmons J L, Bitting K R, et al. Oil and coated devices[J]. Chemical Engineering Journal, 2017,
water separation in marine oil spill clean-up operations[J]. 326: 640–646.
Spill Science & Technology Bulletin, 1996, 3(3): 107–122. [16] Chang C, Bostwick J, Steen P, et al. Substrate constraint
[2] Gossen L P, Velichkina L M. Environmental problems modifies the Rayleigh spectrum of vibrating sessile drops
of the oil-and-gas industry (review)[J]. Petroleum Chem- Physical[J]. Physical Review E Statistical Nonlinear &
istry, 2006, 46(2): 67–72. Soft Matter Physics, 2013, 88(2): 02315.
[3] Shannon M, Bohn P, Elimelech M, et al. Science and [17] Kang K, Lim H, Lee H, et al. Evaporation-induced saline
technology for water purification in the coming decades[J]. Rayleigh convection inside a colloidal droplet[J]. Physics
Nature, 2008, 452(7185): 301–310. of Fluids, 2013, 25(4): 1375–1391.
[4] 张博, 王建华, 吴庆涛, 等. 现代油水分离技术与原理 [J]. 过 [18] Agostini M, Grecoa G, Cecchini M. A Rayleigh surface
滤与分离, 2014, 24(2): 39–45. acoustic wave (R-SAW) resonator biosensor based on pos-
Zhang Bo, Wang Jianhua, Wu Qingtao, et al. Review itive and negative reflectors with sub-nanomolar limit of
of modem oil-water separation technology and mecha- detection[J]. Sensors and Actuators B: Chemical, 2018,
nism[J]. Journal of Filtration & Separation, 2014, 24(2): 254: 1–7.
39–45. [19] Schmitt M, Stich S, Fromm S, et al. Detection and re-
[5] 吴应湘, 许晶禹. 油水分离技术 [J]. 力学进展, 2015, 45: moval of droplets on non-piezoelectric substrates via mode
179–216. conversion of Lamb waves[J]. British Journal for the Phi-
Wu Yingxiang, Xu Jingyu. Oil and water separation tech- losophy of Science, 2010, 143(2): 304–308.
nology[J]. Advance in Mechanics, 2015, 45: 179–216. [20] Liang W, Tietze S, Schmitt M, et al. Droplet propulsion
[6] 万楚筠, 黄凤洪, 廖李, 等. 重力油水分离技术研究进展 [J]. 工 on non-piezoelectric substrates induced by Lamb waves[J].
业水处理, 2008, 28(7): 13–16. AIP Conference Proceedings, 2012, 1474: 392–395.
Wan Chuyun, Huang Fenghong, Liao Li, et al. Research [21] Liang W, Lindner G. Investigations of droplet movement
development in the gravity oil water separation technol- excited by Lamb waves on a non-piezoelectric substrate[J].
ogy[J]. Industrial Water Treatment, 2008, 28(7): 13–16. Journal of Applied Physics, 2013, 114(4): 044501.
[7] Shi Z, Zhang W, Zhang F, et al. Ultrafast separation of [22] Dong Z, Yao C, Zhang Y. Hydrodynamics and mass trans-
emulsified oil/water mixtures by ultrathin free-standing fer of oscillating gas-liquid flow in ultrasonic microreac-
single-walled carbon nanotube network films[J]. Advanced tors[J]. AIChE Journal, 2016, 62(4): 1294–1307.
Materials, 2013, 25(17): 2422–2427. [23] Watanabe S, Matsumoto S, Higurashi T. Almost com-
[8] Huang X, Lim T T. Performance and mechanism of a plete separation of a fluid component from a mixture us-
hydrophobic-oleophilic kapok filter for oil/water separa- ing burgers networks of microseparators[J]. Journal of the
tion[J]. Desalination, 2006, 190(1–3): 295–307. Physical Society of Japan, 2015, 84(4): 043401.
[9] Zhang F, Zhang W B, Shi Z, et al. Nanowire-haired [24] Khazaaleh S, Saeed N, Taha I, et al. Piezoelectric
inorganic membranes with superhydrophilicity and un- micromachined ultrasonic transducers and micropumps:
derwater ultralow adhesive superoleophobicity for high- from design to optomicrofluidic applications[J]. Society