Page 69 - 应用声学2019年第2期
P. 69

第 38 卷 第 2 期            关昭等: 基于兰姆波在倾斜镜子基板上的油水微分离实验                                          215


             油水分离位移随着激发电压的增大而减小;在激发                                efficiency oil/water separation[J]. Advanced Materials,
             电压和基板倾角不变时,油水分离位移随着油水混                                2013, 25(30): 4192–4198.
                                                                [10] Luo C, Heng X. Separation of oil from a water/oil mixed
             合比例的减小而减小;当激发电压和油水混合比例
                                                                   drop using two nonparallel plates[J]. Langmuir, 2014,
             不变时,油水分离位移随着基板倾角的增大而减小。                               30(33): 10002–10010.
             通过比较图像可知,当油水混合液滴在较大的基板                             [11] Zhang Q D, Liu N, Cao Y Z, et al. A facile method
                                                                   to prepare dual-functional membrane for efficient oil re-
             倾角、较大的激发电压以及较小的油水混合比例的
                                                                   moval and in situ reversible mercury ions adsorption from
             情况下,油水分离位移减小。                                         wastewater[J]. Applied Surface Science, 2018, 434: 57–62.
                 所得出的理论关系为油水混合液滴分离提供                            [12] He K, Duan H, Chen G, et al. Cleaning of oil fouling
                                                                   with water enabled by zwitterionic polyelectrolyte coat-
             了充分的条件。实验中,尽管只利用了橄榄油和水
                                                                   ings: overcoming the imperative challenge of oil-water sep-
             这两种不相溶合的代表性液体,探究了油水分离位                                aration membranes[J]. ACS Nano, 2015, 9(9): 9188–9198.
             移实验的特性,但是,利用兰姆波装置分离油水混合                            [13] Wen Q, Di J, Jiang L, et al. Zeolite-coated mesh film for
                                                                   efficient oil-water separation[J]. Chemical Science, 2013,
             液滴的方法,可以被应用到其他非压电基板上,为实                               4(2): 591–595.
             现分离其他两种不相溶混合液体提供技术支持。                              [14] Liu M, Hou Y, Li J, et al. stable superwetting meshes for
                                                                   on-demand separation of immiscible oil/water mixtures
                                                                   and emulsions[J]. Langmuir, 2017, 33(15): 3702–3710.
                            参 考     文   献                       [15] Xiao Z, Zhang M, Fan W, et al. Highly efficient oil/water
                                                                   separation and trace organic contaminants removal based
                                                                   on superhydrophobic conjugated microporous polymer
              [1] Nordvik A B, Simmons J L, Bitting K R, et al. Oil and  coated devices[J]. Chemical Engineering Journal, 2017,
                 water separation in marine oil spill clean-up operations[J].  326: 640–646.
                 Spill Science & Technology Bulletin, 1996, 3(3): 107–122.  [16] Chang C, Bostwick J, Steen P, et al. Substrate constraint
              [2] Gossen L P, Velichkina L M. Environmental problems  modifies the Rayleigh spectrum of vibrating sessile drops
                 of the oil-and-gas industry (review)[J]. Petroleum Chem-  Physical[J]. Physical Review E Statistical Nonlinear &
                 istry, 2006, 46(2): 67–72.                        Soft Matter Physics, 2013, 88(2): 02315.
              [3] Shannon M, Bohn P, Elimelech M, et al. Science and  [17] Kang K, Lim H, Lee H, et al. Evaporation-induced saline
                 technology for water purification in the coming decades[J].  Rayleigh convection inside a colloidal droplet[J]. Physics
                 Nature, 2008, 452(7185): 301–310.                 of Fluids, 2013, 25(4): 1375–1391.
              [4] 张博, 王建华, 吴庆涛, 等. 现代油水分离技术与原理 [J]. 过           [18] Agostini M, Grecoa G, Cecchini M. A Rayleigh surface
                 滤与分离, 2014, 24(2): 39–45.                         acoustic wave (R-SAW) resonator biosensor based on pos-
                 Zhang Bo, Wang Jianhua, Wu Qingtao, et al. Review  itive and negative reflectors with sub-nanomolar limit of
                 of modem oil-water separation technology and mecha-  detection[J]. Sensors and Actuators B: Chemical, 2018,
                 nism[J]. Journal of Filtration & Separation, 2014, 24(2):  254: 1–7.
                 39–45.                                         [19] Schmitt M, Stich S, Fromm S, et al. Detection and re-
              [5] 吴应湘, 许晶禹. 油水分离技术 [J]. 力学进展, 2015, 45:            moval of droplets on non-piezoelectric substrates via mode
                 179–216.                                          conversion of Lamb waves[J]. British Journal for the Phi-
                 Wu Yingxiang, Xu Jingyu. Oil and water separation tech-  losophy of Science, 2010, 143(2): 304–308.
                 nology[J]. Advance in Mechanics, 2015, 45: 179–216.  [20] Liang W, Tietze S, Schmitt M, et al. Droplet propulsion
              [6] 万楚筠, 黄凤洪, 廖李, 等. 重力油水分离技术研究进展 [J]. 工             on non-piezoelectric substrates induced by Lamb waves[J].
                 业水处理, 2008, 28(7): 13–16.                         AIP Conference Proceedings, 2012, 1474: 392–395.
                 Wan Chuyun, Huang Fenghong, Liao Li, et al. Research  [21] Liang W, Lindner G. Investigations of droplet movement
                 development in the gravity oil water separation technol-  excited by Lamb waves on a non-piezoelectric substrate[J].
                 ogy[J]. Industrial Water Treatment, 2008, 28(7): 13–16.  Journal of Applied Physics, 2013, 114(4): 044501.
              [7] Shi Z, Zhang W, Zhang F, et al. Ultrafast separation of  [22] Dong Z, Yao C, Zhang Y. Hydrodynamics and mass trans-
                 emulsified oil/water mixtures by ultrathin free-standing  fer of oscillating gas-liquid flow in ultrasonic microreac-
                 single-walled carbon nanotube network films[J]. Advanced  tors[J]. AIChE Journal, 2016, 62(4): 1294–1307.
                 Materials, 2013, 25(17): 2422–2427.            [23] Watanabe S, Matsumoto S, Higurashi T. Almost com-
              [8] Huang X, Lim T T. Performance and mechanism of a  plete separation of a fluid component from a mixture us-
                 hydrophobic-oleophilic kapok filter for oil/water separa-  ing burgers networks of microseparators[J]. Journal of the
                 tion[J]. Desalination, 2006, 190(1–3): 295–307.   Physical Society of Japan, 2015, 84(4): 043401.
              [9] Zhang F, Zhang W B, Shi Z, et al.  Nanowire-haired  [24] Khazaaleh S, Saeed N, Taha I, et al.  Piezoelectric
                 inorganic membranes with superhydrophilicity and un-  micromachined ultrasonic transducers and micropumps:
                 derwater ultralow adhesive superoleophobicity for high-  from design to optomicrofluidic applications[J]. Society
   64   65   66   67   68   69   70   71   72   73   74