Page 157 - 201903
P. 157

第 38 卷 第 3 期              李嶷等: 低信噪比条件下多节点声呐目标跟踪算法                                           439


             得到目标轨迹;如果检测门限设置过低,那么单节点                             [3] Coraluppi S, Carthel C. Multi-hypothesis sonar track-
             声呐可能得到大量目标轨迹虚警预报。但是,采用                                ing[C]. Proceedings of the 7th International Conference
                                                                   on Information Fusion, Stockholm, Sweden, 2004.
             本文的算法,对信噪比进行置信度等级划分,并对多
                                                                 [4] Balasingam B, Baum M, Willett P. Random finite set par-
             节点数据进行表决融合后,可得到目标轨迹,且轨迹                               ticle filter for source enumeration and direction-of-arrival
             拟合效果较好,轨迹拟合误差小。                                       tracking using sonar arrays[C]. 2017 20th International
                                                                   Conference on Information Fusion, Xi’an, China, 2017:
                    1.988
                                                                   1–6.
                    1.986                                        [5] Coraluppi S, Carthel C. Distributed tracking in multi-
                    1.984                                          static sonar[J]. IEEE Transactions on Aerospace and Elec-
                                                                   tronic Systems, 2005, 41(3): 1138–1147.
                   y/10 6  m  1.980         B                    [6] Munafò A, Furfaro T, Ferri G, et al. Supporting AUV
                    1.982
                              A
                                                                   localisation through next generation underwater acoustic
                    1.978        C                                 networks: results from the field[C]. IEEE/RSJ Interna-
                                                                   tional Conference on Intelligent Robots and Systems 2016,
                    1.976
                                                                   Daejeon, South Korea, 2016: 1328–1333.
                    1.974
                       1.35  1.40  1.45  1.50  1.55  1.60        [7] Coraluppi S, Carthel C. Performance limits of real-time
                                   x/10  m                         contact-based tracking[C]. IEEE OCEANS 2007, Ab-
                                      5
                                                                   erdeen, UK, June 2007: 1–6.
                         图 7  目标拟合轨迹示意图
                                                                 [8] Lepage K D, Goldhahn R, Alves J, et al. Autonomous
                       Fig. 7 Fitting tracks of target
                                                                   networked anti-submarine warfare research and develop-
                                                                   ment at CMRE[C]. IEEE OCEANS 2015, Genova, Italy,
             3 结论                                                  May 2015: 1–6.
                                                                 [9] Blanding W, Willett P, Coraluppi S. Sequential ML for
                 本文采用分级滤波方法,首先根据目标的运动                              multistatic sonar tracking[C]. IEEE OCEANS 2007, Ab-
             特性分别对各节点的亮点数据进行轨迹判定,剔除                                erdeen, UK, 2007: 1–6.
                                                                [10] Grimmett D, Coraluppi S. Contact-level multistatic sonar
             孤立的野点;然后利用多节点协同探测优势,在考虑
                                                                   data simulator for tracker performance assessment[C].
             各段轨迹置信度高低的情况下,采用多节点投票表                                IEEE 2006 9th International Conference on Information
             决方法对轨迹进行判断,保留综合性能较优的轨迹                                Fusion, Florence, Italy, 2006: 1–7.
             段。算法通过单节点声呐到多节点声呐的逐级滤波                             [11] Braca P, Goldhahn R, Ferri G, et al. Distribution infor-
                                                                   mation fusion in multistatic sensor networks for under-
             处理,最终剔除了大部分亮点数据,有效减少了虚警
                                                                   water surveillance[J]. IEEE Sensor Journal, 2016, 16(11):
             概率。                                                   4003–4014.
                 本文采用的 “结合置信度水平的表决融合” 算                         [12] Papa G, Braca P, Horn S, et al.  Adaptive Bayesian
             法既考虑了原始回波信号的信噪比,又考虑了轨迹                                tracking with unknown time-varying sensor network per-
                                                                   formance[C]. IEEE 2006 9th International Conference on
             的连续性和置信度水平,最后还从多节点声呐决策
                                                                   Acoustic Speech Signal Process, Brisbane, QLD, Aus-
             的角度进行了分析。从文中可看出,在低信噪比条                                tralia, 2015: 2534–2538.
             件下,单节点声呐对目标进行定位跟踪时的误差大,                            [13] Sildam J, Lepage K D. Ambiguity reduction of under-
             轨迹断续,很难得到目标的真实轨迹。但是利用多                                water targets in framework of topic modeling[C]. IEEE
                                                                   2005 18th International Conference on Information Fu-
             个声呐节点进行探测,并采用本文提出的数据融合
                                                                   sion, Washington, DC, USA, 2015: 2017–2024.
             算法后,可以充分利用各节点的探测优势,提高检测                            [14] Ferri G, Munafò A, Alves J, et al. A data-driven con-
             概率和目标定位跟踪精度。                                          trol strategy in synergy with continuous active sonar for
                                                                   littoral underwater surveillance[C]. IEEE OCEANS 2016
                            参 考     文   献                          MTS/IEEE Monterey, Monterey, CA, USA, 2016: 1–7.
                                                                [15] Li Y, Chen X H, Sun C Y. A tracking method based on
              [1] Meyer F, Braca P, Willett P, et al. A scalable algorithm  particle filter for multistatic sonar system[C]. IEEE Inter-
                 for tracking an unknown number of targets using multiple  national Conference on Signal Processing, Communication
                 sensors[J]. IEEE Transactons on Signal Processing, 2017,  & Computing, Guilin, China, 2014: 162–165.
                 65(13): 3478–3493.                             [16] Yang L, Yang L, Ho K C. Moving target localization in
              [2] Coraluppi S, Grimmett D. Multistatic sonar tracking[C].  multistatic sonar using time delays, Doppler shifts and ar-
                 Proceedings of the SPIE Conference on Signal Processing,  rival angles[C]. IEEE International Conference on Acous-
                 Sensor Fusion, and Target Recognition XII, Orlando FL,  tics, Speech and Signal Processing, New Orleans, LA,
                 USA, 2003, 5096: 399–410.                         USA, 2016: 3399–3403.
   152   153   154   155   156   157   158   159   160   161   162