Page 104 - 应用声学2019年第5期
P. 104

856                                                                                  2019 年 9 月


             加深入,本文忽略了孤子内波的水平折射效应,研究                             [5] Badiey M, Mu Y, Lynch J F, et al. Temporal and az-
             了对二维声场水平纵向相关性的影响,未来将在以                                imuthal dependence of sound propagation in shallow wa-
                                                                   ter with internal waves[J]. IEEE Journal of Oceanic En-
             下方面完善对孤子内波研究的工作:
                                                                   gineering, 2002, 27(1): 117–129.
                 (1) 由于孤子内波的水平折射效应不可忽视,                          [6] 蔡树群, 甘子钧. 南海北部孤立子内波的研究进展 [J]. 地球科
             已经建立适用于孤子内波环境的三维耦合简正波                                 学进展, 2001, 16(2): 215–219.
             模型,下一步将利用三维模型研究孤子内波对三维                                Cai Shuqun, Gan Zijun. Progress in the study of the inter-
                                                                   nal soliton in the Northern South China Sea[J]. Advance
             声场的影响以及对三维声场水平纵向相关性和水
                                                                   in Earth Sciences, 2001, 16(2): 215–219.
             平横向相关性的研究,并通过实验验证仿真结果。                              [7] 李整林, 张仁和, Mohsen Badiey, 等. 孤立子内波引起的高
                 (2) 孤子内波与声源和接收器的相对位置对三                            号简正波到达时间起伏 [J]. 声学学报, 2011, 36(6): 559–567.
             维声场的影响很大,将考虑三维声场中孤子内波位                                Li Zhenglin, Zhang Renhe, Mohsen Badiey, et al. Ar-
                                                                   rival time fluctuation of higher order normal modes caused
             置的改变对水平纵向相关性的影响。
                                                                   by solitary internal waves[J]. Acta Acustica, 2011, 36(6):
                                                                   559–567.
                            参 考     文   献                        [8] 宋俊, 李风华, 胡永明. 孤子内波对声场水平纵向相干特性的
                                                                   影响 [J]. 声学技术, 2007, 26(2): 199–205.
                                                                   Song Jun, Li Fenghua, Hu Yongming.  Effect of soli-
              [1] Zhou J, Zhang X, Rogers P H. Resonant interaction of
                                                                   tary internal wave on horizontal longitudinal coherence of
                 sound wave with internal solitons in the coastal zone[J].
                                                                   shallow-water acoustic fields[J]. Technical Acoustics, 2007,
                 Journal of the Acoustical Society of America, 1991, 90(4):
                                                                   26(2): 199–205.
                 2042–2054.
              [2] Apel J R, Badiey M, Chiu C S, et al. An overview of  [9] Guo L H, Gong Z X, Wu L X. Space and time coherence
                 the 1995 SWARM shallow-water internal wave acoustic  of acoustics field in shallow water[J]. Chinese Physics Let-
                 scattering experiment[J]. IEEE Journal of Oceanic Engi-  ters, 2001, 18(10): 1366–1368.
                 neering, 1997, 22(3): 465–500.                 [10] Li F H, Zhang R H. Frequency dependence of longitudinal
              [3] Headrick R H, Lynch J F, Kemp J N, et al. Acoustic nor-  correlation length in the Yellow Sea[J]. Chinese Physics
                 mal mode fluctuation statistics in the 1995 SWARM inter-  Letters, 2008, 25(7): 2539.
                 nal wave scattering experiment[J]. Journal of the Acous-  [11] 胡治国, 李整林, 张仁和, 等. 深海不平海底对声场水平纵向
                 tical Society of America, 2000, 107(1): 201–220.  相关性的影响 [J]. 声学学报, 2016, 41(5): 758–767.
              [4] Headrick R H, Lynch J F, Kemp J N, et al. Modeling  Hu Zhiguo, Li Zhengli, Zhang Renhe, et al. The effects
                 mode arrivals in the 1995 SWARM experiment acous-  of the uneven bottom on horizontal longitudinal corre-
                 tic transmissions[J]. Journal of the Acoustical Society of  lations of acoustic field in deep water[J]. Acta Acustica,
                 America, 2000, 107(1): 221–236.                   2016, 41(5): 758–767.
   99   100   101   102   103   104   105   106   107   108   109