Page 23 - 《应用声学》2019年第6期
P. 23
第 38 卷 第 6 期 丁建策等: 基于稀疏表示和特征加权的离格双耳声源定位 925
Li Junfeng, Xu Huaxing, Xia Risheng, et al. Binaural au- 177–182.
dio technologies based on human auditory perception[J]. [11] 胡顺仁, 刘骁, 李双. 联合稀疏贝叶斯学习与子空间的近场信
Journal of Applied Acoustics, 2018, 37(5): 706–716. 号源定位 [J]. 信号处理, 2017, 33(3A): 27–32.
[2] Farmani M, Pedersen M S, Tan Z, et al. Maximum likeli- Hu Shunren, Liu Xiao, Li Shuang. Source localization of
hood approach to “informed” sound source localization for joint subspace method and sparse Bayesian learning in the
hearing aid applications[J]. IEEE Transactions on Audio, near-field[J]. Journal of Signal Processing, 2017, 33(3A):
Speech, and Language Processing, 2017, 25(3): 611–623. 27–32.
[3] Deleforge A, Horaud R, Schechner Y Y, et al. Co- [12] Schroeder M. The statistical of frequency responses in
localization of audio sources in images using binaural fea- large room[J]. Acustica, 1954, 4: 594–600.
tures and locally-linear regression[J]. IEEE Transactions
[13] 孙洪, 张智林, 余磊. 从稀疏到结构化稀疏: 贝叶斯方法 [J].
on Audio, Speech, and Language Processing, 2015, 23(4): 信号处理, 2012, 28(6): 759–773.
718–731. Sun Hong, Zhang Zhilin, Yu Lei. From sparsity to struc-
[4] Jeffress L A. A place theory of sound localization[J]. Jour- tured sparsity: Bayesian perspective[J]. Journal of Signal
nal of Comparative and Physiological Psychology, 1948,
Processing, 2012, 28(6): 759–773.
61: 468–486.
[14] 丁建策, 郑成诗, 李晓东. 双耳相干混响比加权的声源定位算
[5] Raspaud M, Viste H, Evangelista G. Binaural source lo-
法 [C] //2017 年全国声学学术会议, 2017.
calization by joint estimation of ILD and ITD[J]. IEEE
[15] Ding J, Wang J, Zheng C, et al. Analysis of binaural fea-
Transactions on Audio, Speech, and Language Process-
tures for supervised localization in reverberant environ-
ing, 2010, 18(1): 68–77.
ments[C]. 141st Audio Engineering Society Convention,
[6] Finger H, Ruvolo P, Liu S C, et al. Approaches and
2016: 1–9.
databases for online calibration of binaural sound localiza-
[16] Lindevald I M, Benade A H. Two-ear correlation in the
tion for robotic head[C]. IEEE/RSJ International Confer-
statistical sound field of rooms[J]. Journal of the Acousti-
ence on Intelligent Robots and Systems, Taipei, Taiwan,
cal Society of America, 1986, 80(2): 661–664.
2010: 4340–4345.
[17] Schwarz A, Kellermann W. Coherent-to-diffuse power ra-
[7] Deleforge A, Forbes F, Horaud R. Acoustic space learn-
tio estimation for dereverberation[J]. IEEE Transactions
ing for sound source separation and localization on binau-
on Audio, Speech, and Language Processing, 2015, 23(6):
ral manifolds[J]. International Journal of Neural Systems,
1006–1018.
2015, 25(1): 1–20.
[8] Ma N, May T, Brown G J. Exploiting deep neural net- [18] Gardner B, Martin K. HRTF measurements of a kemar
works and head movements for robust binaural localiza- dummy-head microphone[R]. MIT Media Lab. Perceptual
tion of multiple sources in reverberant environments[J]. Computing-Technical Report, 1994: 1–7.
IEEE Transactions on Audio, Speech, and Language Pro- [19] Garofolo J S. DAPRA TIMIT acoustic-phonetic speech
cessing, 2017, 25(12): 2444–2453. database[DB]. National Institute of Standards and Tech-
[9] Yang Z, Xie L H, Zhang C S. Off-grid direction of ar- nology(NIST), 1988.
rival estimation using sparse Bayesian inference[J]. IEEE [20] Liu H, Zhang J, Fu Z. A new hierarchical binaural sound
Transactions on Signal Processing, 2013, 61(1): 38–43. source localization method based on interaural matching
[10] 高阳, 陈俊丽, 杨广立. 基于酉变换和稀疏贝叶斯学习的离格 filter[C]. IEEE International Conference on Robotics and
DOA 估计 [J]. 通信学报, 2017, 38(6): 177–182. Automation, 2014: 1598–1605.
Gao Yang, Chen Junli, Yang Guangli. Off-grid DOA es- [21] Allen J B, Berkley D A. Image method for efficiently sim-
timation based on unitary transform and sparse Bayesian ulating small-room acoustics[J]. Journal of the Acoustical
learning[J]. Journal on Communications, 2017, 38(6): Society of America, 1979, 65(4): 943–950.