Page 132 - 《应用声学》2020年第5期
P. 132
774 2020 年 9 月
发生了反射,并沿x轴负方向传播,反射波主要为S 1 [3] Memmolo V, Monaco E, Boffa N D, et al. Guided wave
模式,透射模式主要为 A 0 模式。其中 4 mm-2 mm propagation and scattering for structural health monitor-
ing of stiffened composites[J]. Composite Structures, 2018,
的反射回波 S 1 模式更明显;而在 4 mm-3 mm 台阶
184: 568–580.
板中,透射波A 0 模式更明显。 [4] Gao H, Rose J L. Goodness dispersion curves for ultra-
sonic guided wave based SHM: a sample problem in corro-
4 结论 sion monitoring[J]. Aeronautical Journal, 2010, 114(1151):
49–56.
[5] Muñoz C Q G, Marquez F P G, Lev B, et al. New
在相同激励频率下,反对称模式的兰姆波因为
pipe notch detection and location method for short dis-
波长相比于对称模式波长更小,因而对微小缺陷更 tances employing ultrasonic guided waves[J]. Acta Acus-
加灵敏。由于残余应力的影响,通过常规的动态光 tica united with Acustica, 2017, 103(5): 772–781.
[6] Su Z, Ye L, Lu Y. Guided Lamb waves for identification
弹法观测兰姆波主应力图像无法获得模式信息。本
of damage in composite structures: a review[J]. Journal
文通过 45 偏振光照明的动态光弹法可以清晰地观 of Sound and Vibration, 2006, 295(3–5): 753–780.
◦
测到 A 0 模式兰姆波在 K9 玻璃中的传播,通过解析 [7] Mindlin R D, Yang J. An introduction to the mathemat-
ical theory of vibrations of elastic plates[M]. Singapore:
法推导与之对应的切应力表达式计算的理论光弹
World Scientific Publishing, 1955.
模式结果和实际的观测一致。此外根据照片间隔时 [8] Meitzler A H. Backward-wave transmission of stress pulses
间以及图像分析,可以获得频散较小模式的实际相 in elastic cylinders and plates[J]. The Journal of the
Acoustical Society of America, 1965, 38(5): 835–842.
速度,且和理论频散曲线中对应数值接近。通过光
[9] Bramhavar S, Prada C, Maznev A A, et al. Negative
弹实验结果的分析可知,当使用兰姆波对具有变壁 refraction and focusing of elastic Lamb waves at an inter-
厚结构的阶梯板进行检测时,若从厚度较大的一端 face[J]. Physical Review B, 2011, 83(1): 014106.
[10] Hu Z T, An Z W, Lian G X, et al. Propagation properties
入射,A 0 模式的兰姆波能够大部分通过阶梯处;随
of backward Lamb waves in plate investigated by dynamic
着厚度差增大,回波能量增强,透射波能量减小,兰 photoelastic technique[J]. Chinese Physics Letters, 2017,
姆波的模态转换现象更加明显。动态光弹法的研究 34(11): 114–301.
结果可以为实际检测提供参考。 [11] Germano M, Alippi A, Bettucci A, et al. Anomalous and
negative reflection of Lamb waves in mode conversion[J].
Physical Review B, 2012, 85(1): 012102.
[12] Shuvalov A L, Poncelet O. On the backward Lamb waves
参 考 文 献
near thickness resonances in anisotropic plates[J]. Interna-
tional Journal of Solids and Structures, 2008, 45(11–12):
[1] 高广健, 邓明晰. 用于储罐底板缺陷检测的超声兰姆波模式研 3430–3448.
究 [J]. 应用声学, 2012, 31(1): 42–48. [13] Prada C, Clorennec D, Royer D. Local vibration of an
Gao Guangjian, Deng Mingxi. Examination of ultrasonic elastic plate and zero-group velocity Lamb modes[J]. The
Lamb waves for detection of flaws in the bottom plate of Journal of the Acoustical Society of America, 2008, 124(1):
oil tank[J]. Applied Acoustics, 2012, 31(1): 42–48. 203–212.
[2] 何存富, 怀保玲, 杜婷, 等. 基于兰姆波的大型罐体液位定点 [14] Hu Z, Cui H, An Z, et al. Measurements of backward wave
检测方法 [J]. 机械工程学报, 2007, 43(6): 99–104. propagation using the dynamic photoelastic technique[C].
He Cunfu, Huai Baoling, Du Ting, et al. Method monitor- 2016 IEEE International Ultrasonics Symposium (IUS).
ing fixed liquid level of large tanks using Lamb waves[J]. IEEE, 2016: 1–4.
Chinese Journal of Mechanical Engineering, 2007, 43(6): [15] Li H U, Negishi K. Visualization of Lamb mode patterns
99–104. in a glass plate[J]. Ultrasonics, 1994, 32(4): 243–248.