Page 57 - 《应用声学》2020年第6期
P. 57

第 39 卷 第 6 期   田淑爱等: 结合空化微泡母小波变换的高空化噪声比超快速主动空化成像方法                                          851


             在室温(20 C ± 2 C)。水槽壁和底部放置有吸声材                      泡原始回波信号,该回波信号在数值仿真软件中进
                             ◦
                       ◦
             料,用以减少聚焦超声声束的多次反射干扰。聚焦                            行处理。
             超声系统是由聚焦超声换能器和功率放大器构成。
             聚焦超声换能器是单阵元凹面探头,其中心频率为                            2 研究方法
             1.2 MHz,孔径 150 mm,聚焦超声声功率为 72 W。
             聚焦超声作用时间是 1 ms,作用停止后触发信号输                             本文提出结合 CBWT、波束合成和 SSD 减影
             入到 Verasonics 系统时,选择的线阵探头的中心频                     的超快速主动空化成像方法,如图2 所示,给出了本
             率为 5 MHz,带宽为 80%,阵元数为 128,采样率为                    文 3 部分算法:CBWT 算法、波束合成算法 (DAS、
             40 MHz,发射并接收平面波信号,采集得到空化微                         MV和MVCF)以及SSD数字减影。

                                                    ԧ࠱ࣱ᭧ฉ


                                                   ቇӑڀฉηՂ

                                31//1വیᄊ౞थ
                                                  ᤌ         Ԕ
                                                  ፞   ࠵ ణ   ݽ
                                                  ࠵   ฉ ̽   ࠱       ฉౌՌੇካข
                                 ᮕ฾ᄊܦԍజጳ                                           SSD஝ߚѓॖ
                                                  ฉ   ጇ     ᮠ    DASnjMVnjMVCF
                                                  ԫ   ஝     ஝
                                                  ૱         ૶
                                 ቇӑॲจඇ࠵ฉ
                                                       CBWTካข
                                      图 2  CBWT 结合波束合成以及 SSD 数字减影研究流程图
                         Fig. 2 CBWT combined beam synthesis and SSD digital subtraction research flowchart

             2.1 基于平面波的空化微泡母小波技术                               据空化泡尺寸分布          [18]  相关研究,这里将初始半径

             2.1.1 构建空化微泡母小波                                   设置为1.0 µm。
                 本文所研究的空化微泡属于无包膜的自由                                通过对公式 (1) 和公式 (2) 求解,可预测出空化
             气泡,并且假设初始微泡是静止不动,微泡振动                             微泡回波声压曲线,如图 3 所示。将预测的声压曲
             过程中一直保持球形而没有形状改变的理想状                              线 P(t) 进行归一化,作为空化微泡母小波。声学参
             态。RPNNP 模型      [17]  假设符合这一理论,其模型表               数是平面波传输的声场分布参数,驱动声压是实际
             达式为                                               测量值,如图3(a)所示。
                             3
                               ¨
                         ¨
                       RR + R
                             2                                          RPNNP 模型中符号的含义与仿真计算
                        [(              )(    ) 3K                表 1
                       1        2σ          R 0
                     =     P 0 +   − P V                          时使用的参数
                       ρ        R 0         R
                                                                  Table 1 Meaning of symbols in RPNNP
                                             ˙
                                              ]
                                    2σ    4µR
                       + P V − P A −   −       .        (1)       model and parameters used in simulation
                                     R     R
                                                                  calculation
                 利用四阶 Runge-Kutta 方法对与时间有关的
             半径进行数值求解,可以得到微泡振动半径随时间                                 参数          参数名称及单位             数值
             的变化曲线R(t)。振动微泡辐射出的声压曲线P(t)                              C        液体中声速/(m·s  −1 )     1540
             计算公式如下:                                                  ρ       液体密度/(kg·m  −3 )     1000
                                                                               液体静态压/kPa            101
                            ρ   2                                    P V
                                    ¨
                                              ˙ 2
                   P(r, t) =  (R (t)R(t) + R(t)R (t)),  (2)                    水蒸气的压强/kPa           2.33
                            r                                        P A
             其中,r 是驱动声压到微泡中心的距离。                                      σ      液体表面张力/(N·m   −1 )    0.0727
                 在常温 20 下,在液体水中的 RPNNP 模型中                            κ         气体的多方系数             1.4
                          ◦
             各符号的含义以及仿真需要的参数如表 1 所示。根                                 µ      液体的粘滞系数/(Pa·s)        0.001
   52   53   54   55   56   57   58   59   60   61   62