Page 62 - 《应用声学》2020年第6期
P. 62

856                                                                                 2020 年 11 月


              表 3  结合 CBWT 和 SSD 前后空化图像的 CNR 值                     665–672.
                                                                   Zhao Jinyu, Tao Chao, Zhang Shuyi, et al. Experimental
                Table 3 The CNRs of cavitation images
                                                                   and theoretical studies on the thermal effect enhancement
                before and after CBWT and SSD
                                                                   of biological samples irradiated by laser co-focused ultra-
                                                                   sound[J]. Acta Acustica, 2018, 43(4): 665–672.
                算法      CNR/dB          算法         CNR/dB
                                                                 [8] Yin H, Qiao Y, Cao H, et al. Cavitation mapping by
              DAS-SSD    23.51     CBWT-DAS-SSD     23.86          sonochemiluminescence with less bubble displacement in-
               MV-SSD    19.99      CBWT-MV-SSD     21.55          duced by acoustic radiation force in a 1.2 MHz HIFU[J].
                                                                   Ultrasonics Sonochemistry, 2014, 21(2): 559–565.
              MVCF-SSD   31.73    CBWT-MVCF-SSD     39.25
                                                                 [9] 马学进, 高琨, 王娜, 等. 高空化组织比的宽带次谐波主动空
                 图6 是基于CBWT-MVCF-SSD的空化动态监                         化成像方法 [J]. 生物医学工程学杂志, 2019, 36(6): 938–944,
                                                                   956.
             控序列图,分别是聚焦超声作用 50 µs、1 ms、2 ms、
                                                                   Ma Xuejin, Gao Kun, Wang Na, et al. Broadband subhar-
             5 ms 时的空化图像,图中高亮区域为泡群,显示了                             monic active cavitation imaging method with high cavi-
             不同聚焦超声作用时刻空化分布情况,从而达到对                                tation tissue ratio[J]. Journal of Biomedical Engineering,
                                                                   2019, 36(6): 938–944, 956.
             空化活动的动态监控。                                         [10] 许欢. 基于信号处理的声空化监控及组织异常信号检测 [D].
                                                                   南京: 南京大学, 2018.
             4 结论                                               [11] Farny H C, Holt G R, Ronald A R. Temporal and spatial
                                                                   detection of HIFU-Induced inertial and hot-vapor cavita-
                 本文提出一种结合 CBWT、波束合成和 SSD                           tion with a diagnostic ultrasound system[J]. Ultrasound
                                                                   in Medicine and Biology, 2009, 35(4): 603–615.
             数字减影的超快速主动空化成像方法,主要讨论                              [12] Gyngy M, Coussios C C. Passive spatial mapping of in-
             了 CBWT、3 种波束合成算法 (DAS、MV、MVCF)                        ertial cavitation during HIFU exposure[J]. IEEE Transac-
             以及SSD数字减影算法对空化图像CNR值的影响,                              tions on Bio-Medical Engineering, 2010, 57(1): 48–56.
                                                                [13] Gateau J, Aubry J F, Pernot M, et al. Combined passive
             实验结果表明,CBWT结合波束合成算法可提高空                               detection and ultrafast active imaging of cavitation events
             化图像的质量和 CNR值,且CBWT-MVCF的效果                            induced by short pulses of high-intensity ultrasound[J].
             最佳。进一步结合 SSD 数字减影,CBWT-MVCF-                          IEEE Transactions on Ultrasonics, Ferroelectrics, and Fre-
                                                                   quency Control, 2011, 58(3): 517–532.
             SSD 空化图像最优,其 CNR 值可比 DAS 空化图像                      [14] Liu R, Hu H, Xu S, et al. Ultrafast active cavitation
             高31.73 dB,可实现对空化活动的动态监控。                              imaging with enhanced cavitation to tissue ratio based
                                                                   on wavelet transform and pulse inversion[J]. The Jour-
                                                                   nal of the Acoustical Society of America, 2015, 137(6):
                            参 考     文   献                          3099–3106.
                                                                [15] Bai C, Xu S, Duan J, et al.  Pulse-inversion subhar-
              [1] Szabo T L. Diagnostic ultrasound imaging: inside out[M].  monic ultrafast active cavitation imaging in tissue us-
                                                                   ing fast eigenspace-based adaptive beamforming and cav-
                 New York: Academic Press, 2004.
              [2] Elias W J, Kassell N F. Focused ultrasound surgery[J].  itation deconvolution[J]. IEEE Transactions on Ultrason-
                 Neurosurgical Focus, 2012, 32(1): Introduction.   ics Ferroelectrics and Frequency Control, 2017, 64(8):
              [3] 冯若. 高强度聚焦超声 (HIFU) 无创外科——21 世纪治疗肿                1175–1193.
                 瘤的新技术 [J]. 应用声学, 2001, 20(2): 38–42.           [16] 黄玉蓉, 余锦华, 汪源源, 等. 基于微泡母小波变换的超声造
                 Feng Ruo. High intensity focused ultrasound (HIFU) non-  影成像方法 [J]. 航天医学与医学工程, 2018, 31(1): 37–42.
                 invasive surgery—A new technology for the treatment of  Huang Yurong, Yu Jinhua, Wang Yuanyuan, et al. Ul-
                 tumors in the 21st century[J]. Applied Acoustics, 2001,  trasound contrast imaging method based on microbub-
                 20(2): 38–42.                                     ble mother wavelet transform[J]. Aerospace Medicine and
              [4] Swart B, Zhao Y, Khakua M, et al. In situ characterisa-  Medical Engineering, 2018, 31(1): 37–42.
                 tion of size distribution and rise velocity of microbubbles  [17] Plesst M S. The dynamics of cavitation bubbles[J]. Jour-
                 by high-speed photography[J]. Chemical Engineering Sci-  nal of Applied Mechanics, 1949, 16(3): 277–282.
                 ence, 2020, 225: 115836.                       [18] 徐珊珊. 空化微泡尺寸分布与包膜微泡时空控制释放 [D]. 西
              [5] 孙雪, 张宇宁. 基于高速摄影技术的自由液面附近空化现象研                    安: 西安交通大学, 2014.
                 究 [C]. 2019 年全国工业流体力学会议摘要集, 2019.              [19] 丁婷, 胡虹, 杨录, 等. 融合最小方差自适应和相干系数波束
              [6] Gao Y, Du X. Stability mechanisms of gas bubbles sub-  合成的超快速主动空化成像方法 [J]. 测试科学与仪器, 2017,
                 ject to ultrasonic field during the rectified diffusion in liq-  8(1): 68–77.
                 uids[J]. Journal of Harbin Institute of Technology(New  Ding Ting, Hu Hong, Yang Lu, et al. Minimum vari-
                 Series), 2019, 26(1): 68–76.                      ance adaptive beamforming combined with coherence fac-
              [7] 赵瑾瑜, 陶超, 张淑仪, 等. 激光协同聚焦超声辐照生物样                   tor weighting applied to ultrafast active cavitation imag-
                 品增强热效应的实验和理论研究 [J]. 声学学报, 2018, 43(4):            ing[J]. Test Science and Instruments, 2017, 8(1): 68–77.
   57   58   59   60   61   62   63   64   65   66   67