Page 9 - 《应用声学》2020年第6期
P. 9

第 39 卷 第 6 期                  胡洁等: 平面超薄准直器件的参数依赖性                                           803


             结构共振频率仍保持为 11 kHz,结构的横向尺度约                          [6] 杨益, 阎兆立, 温周斌, 等. 超指向性扬声器的阵列设计与研
             为入射波长的2 倍,纵向尺度约为入射波长的1/10,                            究 [J]. 声学技术, 2008, 27(3): 433–438.
                                                                   Yang Yi, Yan Zhaoli, Wen Zhoubin, et al. Design and
             得到的透射声场图如图 5 所示,其中 λ 为声波频率
                                                                   research of an ultrasonic transducer array applied in au-
             为11 kHz时对应的声波波长,其准直声束的距离超                             dio beam loudspeaker[J]. Technical Acoustics, 2008, 27(3):
             过入射声波波长的30倍。                                          433–438.
                                                                 [7] Mei J, Hou B, Ke M, et al. Acoustic wave transmission
             3 结论                                                  through a bull’s eye structure[J]. Applied Physics Letters,
                                                                   2008, 92(12): 124106.
                 本文提出了一种深亚波长尺度的平面超薄结                             [8] Wang Z, Lee S, Kim C, et al.  Acoustic wave propa-
                                                                   gation in one-dimensional phononic crystals containing
             构,其中心处有一折叠狭缝,两侧上下均有类亥姆
                                                                   Helmholtz resonators[J]. Journal of Applied Physics, 2008,
             霍兹共振器阵列。当入射波频率和中心折叠狭缝产                                103(6): 064907.
             生的 F-P 共振频率及两侧类亥姆霍兹共振器阵列                            [9] Cheng Y, Xu J, Liu X J. Tunable sound directional beam-
                                                                   ing assisted by acoustic surface wave[J]. Applied Physics
             的共振频率接近时,可在远低于入射波波长的纵向
                                                                   Letters, 2010, 96(7): 071910.
             尺度上产生高效准直声束。通过仿真可知,上下两                             [10] Picó R, Sánchez-Morcillo J V, Pérez-Arjona I, et al. Spa-
             侧的凹槽阵列分别将透射后四处逸散的高阶散射                                 tial filtering of sound beams by sonic crystals[J]. Applied
             波和平面入射声波转换为沿结构表面传输的声表                                 Acoustics, 2012, 73(4): 302–306.
                                                                [11] Deymier P A. Acoustic metamaterials and phononic crys-
             面波,并向中心处汇聚,极大提高了透射效率,提升
                                                                   tals[M]. Berlin: Springer, 2013.
             了准直效果。结构的共振频率与中心狭缝及两侧凹                             [12] 倪旭, 张小柳, 卢明辉, 等. 声子晶体和声学超构材料 [J]. 物
             槽的共振频率有关,此外,若取消任意一侧的凹槽                                理, 2012, 41(10): 655–662.
             将会对结构共振频率和准直效果均有影响。而凹槽                                Ni Xu, Zhang Xiaoliu, Lu Minghui, et al. Phononic crys-
                                                                   tals and acoustic metamaterial[J]. Physics, 2012, 41(10):
             之间间距D 和每侧凹槽数量 r 的改变不会影响结构
                                                                   655–662.
             共振频率,因为该结构的工作原理与布拉格散射无                             [13] Lu M, Liu X, Feng L, et al. Extraordinary acoustic trans-
             关,所以可在保持高有效性的同时进一步缩减结构                                mission through a 1D grating with very narrow aper-
             尺寸,从而有望在小型无源指向性声辐射器件的研                                tures[J]. Physical Review Letters, 2007, 99(17): 174301.
                                                                [14] Christensen J, Fernandez-Dominguez I A, Leon-Perez D
             制中提供新的思路,产生潜在应用。
                                                                   F, et al. Collimation of sound assisted by acoustic surface
                                                                   waves[J]. Nature Physics, 2007, 3(12): 851–852.
                            参 考     文   献                       [15] Christensen J, Martin-Moreno L, Garcia-Vidal F J.
                                                                   Theory of resonant acoustic transmission through sub-
                                                                   wavelength apertures[J]. Physical Review Letters, 2008,
              [1] Pompei F. The use of airborne ultrasonics for generating
                                                                   101(1): 014301.
                 audible sound beams[J]. Journal of the Audio Engineering
                                                                [16] Zhou Y, Lu M, Feng L, et al. Acoustic surface evanes-
                 Society, 1999, 47(9): 726–731.
                                                                   cent wave and its dominant contribution to extraordinary
              [2] Wang Z, Zhu W, Zhu H, et al. Fabrication and charac-
                                                                   acoustic transmission and collimation of sound[J]. Physi-
                 terization of piezoelectric micromachined ultrasonic trans-
                                                                   cal Review Letters, 2010, 104(16): 164301.
                 ducers with thick composite PZT films[J]. IEEE Transac-
                 tions on Ultrasonics, Ferroelectrics, and Frequency Con-  [17] Li Y, Liang B, Gu Z, et al. Reflected wavefront manipu-
                 trol, 2005, 52(12): 2289–2297.                    lation based on ultrathin planar acoustic metasurfaces[J].
              [3] 陈敏, 徐利梅, 黄大贵, 等. 声频定向扬声器的研究进展 [J]. 电             Scientific Reports, 2013, 3(1): 2546–2546.
                 声技术, 2006(11): 17–22.                          [18] Xie Y, Wang W, Chen H, et al. Wavefront modulation
                 Chen Min, Xu Limei, Huang Dagui, et al. Progress on  and subwavelength diffractive acoustics with an acous-
                 audio directional loudspeaker research[J]. Audio Engineer-  tic metasurface[J]. Nature Communications, 2014, 5(1):
                 ing, 2006(11): 17–22.                             5553.
              [4] Gan W S, Yang J, Tan K S, et al. A digital beamsteerer  [19] Hu J, Liang B, Qiu X J. High-efficiency collimation of air-
                 for difference frequency in a parametric array[J]. IEEE  borne sound through a single deep-subwavelength aper-
                 Transactions on Audio, 2006, 14(3): 1018–1025.    ture in an ultra-thin planar plate[J]. Applied Physics Ex-
              [5] Yang J, Tan K S, Gan W S, et al. Beamwidth control in  press, 2019, 12(2): 027002.
                 parametric acoustic array[J]. Japanese Journal of Applied  [20] 胡洁. 基于人工结构的无源声场操控 [D]. 南京: 南京大学,
                 Physics, 2005, 44(9A): 6817–6819.                 2019.
   4   5   6   7   8   9   10   11   12   13   14