Page 9 - 《应用声学》2020年第6期
P. 9
第 39 卷 第 6 期 胡洁等: 平面超薄准直器件的参数依赖性 803
结构共振频率仍保持为 11 kHz,结构的横向尺度约 [6] 杨益, 阎兆立, 温周斌, 等. 超指向性扬声器的阵列设计与研
为入射波长的2 倍,纵向尺度约为入射波长的1/10, 究 [J]. 声学技术, 2008, 27(3): 433–438.
Yang Yi, Yan Zhaoli, Wen Zhoubin, et al. Design and
得到的透射声场图如图 5 所示,其中 λ 为声波频率
research of an ultrasonic transducer array applied in au-
为11 kHz时对应的声波波长,其准直声束的距离超 dio beam loudspeaker[J]. Technical Acoustics, 2008, 27(3):
过入射声波波长的30倍。 433–438.
[7] Mei J, Hou B, Ke M, et al. Acoustic wave transmission
3 结论 through a bull’s eye structure[J]. Applied Physics Letters,
2008, 92(12): 124106.
本文提出了一种深亚波长尺度的平面超薄结 [8] Wang Z, Lee S, Kim C, et al. Acoustic wave propa-
gation in one-dimensional phononic crystals containing
构,其中心处有一折叠狭缝,两侧上下均有类亥姆
Helmholtz resonators[J]. Journal of Applied Physics, 2008,
霍兹共振器阵列。当入射波频率和中心折叠狭缝产 103(6): 064907.
生的 F-P 共振频率及两侧类亥姆霍兹共振器阵列 [9] Cheng Y, Xu J, Liu X J. Tunable sound directional beam-
ing assisted by acoustic surface wave[J]. Applied Physics
的共振频率接近时,可在远低于入射波波长的纵向
Letters, 2010, 96(7): 071910.
尺度上产生高效准直声束。通过仿真可知,上下两 [10] Picó R, Sánchez-Morcillo J V, Pérez-Arjona I, et al. Spa-
侧的凹槽阵列分别将透射后四处逸散的高阶散射 tial filtering of sound beams by sonic crystals[J]. Applied
波和平面入射声波转换为沿结构表面传输的声表 Acoustics, 2012, 73(4): 302–306.
[11] Deymier P A. Acoustic metamaterials and phononic crys-
面波,并向中心处汇聚,极大提高了透射效率,提升
tals[M]. Berlin: Springer, 2013.
了准直效果。结构的共振频率与中心狭缝及两侧凹 [12] 倪旭, 张小柳, 卢明辉, 等. 声子晶体和声学超构材料 [J]. 物
槽的共振频率有关,此外,若取消任意一侧的凹槽 理, 2012, 41(10): 655–662.
将会对结构共振频率和准直效果均有影响。而凹槽 Ni Xu, Zhang Xiaoliu, Lu Minghui, et al. Phononic crys-
tals and acoustic metamaterial[J]. Physics, 2012, 41(10):
之间间距D 和每侧凹槽数量 r 的改变不会影响结构
655–662.
共振频率,因为该结构的工作原理与布拉格散射无 [13] Lu M, Liu X, Feng L, et al. Extraordinary acoustic trans-
关,所以可在保持高有效性的同时进一步缩减结构 mission through a 1D grating with very narrow aper-
尺寸,从而有望在小型无源指向性声辐射器件的研 tures[J]. Physical Review Letters, 2007, 99(17): 174301.
[14] Christensen J, Fernandez-Dominguez I A, Leon-Perez D
制中提供新的思路,产生潜在应用。
F, et al. Collimation of sound assisted by acoustic surface
waves[J]. Nature Physics, 2007, 3(12): 851–852.
参 考 文 献 [15] Christensen J, Martin-Moreno L, Garcia-Vidal F J.
Theory of resonant acoustic transmission through sub-
wavelength apertures[J]. Physical Review Letters, 2008,
[1] Pompei F. The use of airborne ultrasonics for generating
101(1): 014301.
audible sound beams[J]. Journal of the Audio Engineering
[16] Zhou Y, Lu M, Feng L, et al. Acoustic surface evanes-
Society, 1999, 47(9): 726–731.
cent wave and its dominant contribution to extraordinary
[2] Wang Z, Zhu W, Zhu H, et al. Fabrication and charac-
acoustic transmission and collimation of sound[J]. Physi-
terization of piezoelectric micromachined ultrasonic trans-
cal Review Letters, 2010, 104(16): 164301.
ducers with thick composite PZT films[J]. IEEE Transac-
tions on Ultrasonics, Ferroelectrics, and Frequency Con- [17] Li Y, Liang B, Gu Z, et al. Reflected wavefront manipu-
trol, 2005, 52(12): 2289–2297. lation based on ultrathin planar acoustic metasurfaces[J].
[3] 陈敏, 徐利梅, 黄大贵, 等. 声频定向扬声器的研究进展 [J]. 电 Scientific Reports, 2013, 3(1): 2546–2546.
声技术, 2006(11): 17–22. [18] Xie Y, Wang W, Chen H, et al. Wavefront modulation
Chen Min, Xu Limei, Huang Dagui, et al. Progress on and subwavelength diffractive acoustics with an acous-
audio directional loudspeaker research[J]. Audio Engineer- tic metasurface[J]. Nature Communications, 2014, 5(1):
ing, 2006(11): 17–22. 5553.
[4] Gan W S, Yang J, Tan K S, et al. A digital beamsteerer [19] Hu J, Liang B, Qiu X J. High-efficiency collimation of air-
for difference frequency in a parametric array[J]. IEEE borne sound through a single deep-subwavelength aper-
Transactions on Audio, 2006, 14(3): 1018–1025. ture in an ultra-thin planar plate[J]. Applied Physics Ex-
[5] Yang J, Tan K S, Gan W S, et al. Beamwidth control in press, 2019, 12(2): 027002.
parametric acoustic array[J]. Japanese Journal of Applied [20] 胡洁. 基于人工结构的无源声场操控 [D]. 南京: 南京大学,
Physics, 2005, 44(9A): 6817–6819. 2019.