Page 10 - 《应用声学》2020年第6期
P. 10

第 39 卷 第 6 期                                                                       Vol. 39, No. 6
             2020 年 11 月                         Journal of Applied Acoustics                 November, 2020

             ⋄ 2019年度全国检测声学和第10届全国储层声学与深部钻测技术前沿联合会议优秀论文 ⋄

                单极随钻声波测井换能器感知信号类型的研究                                                                    ∗



                                       张 超    1   陈 辉     2   胡恒山     1†   王 军    1


                                            (1  哈尔滨工业大学航天学院       哈尔滨    150000)
                                               (2  江南机电设计研究所      贵阳  550009)
                摘要:为了认识测量信号所对应的力学类型及相应类型的钻铤波在钻铤内的分布,该文将理论模拟的随钻声
                波测井波形与实验波形进行对比。与前人单独考虑压电效应或井孔传播效应不同,该文模拟单极随钻声波测
                井响应时,将发射器、接收器、光滑钻铤和井孔结构作为一个整体,采用有限元法计算模拟了电压源激励下接
                收器记录的声压信号和位移信号。将模拟的声压波形与电压信号进行比较,发现二者的钻铤波与斯通利波相
                对幅值相差较大,而模拟的径向位移波形更接近电压信号。进一步比较理论波形与小模型井内实验测量到的
                电压信号,证实电压信号更接近位移信号而与声压信号差异明显。这表明当钻铤光滑时,单极随钻声波测井换
                能器感知的主要是径向位移信号。研究还表明声压信号中的钻铤波能量主要集中在钻铤内壁,径向位移信号
                中的钻铤波能量主要集中在钻铤外壁。
                关键词:随钻声波测井;换能器;声压;径向位移;压电效应
                中图法分类号: TE19           文献标识码: A          文章编号: 1000-310X(2020)06-0804-06
                DOI: 10.11684/j.issn.1000-310X.2020.06.002
              A study on the dominating signal types sensed by the transducers of monopole

                                           acoustic logging-while-drilling

                                ZHANG Chao   1   CHEN Hui  2  HU Hengshan 1  WANG Jun   1
                              (1  School of Astronautics, Harbin Institute of Technology, Harbin 150000, China)
                          (2  Jiangnan Design & Research Institute of Machinery & Electricity, Guiyang 550009, China)

                 Abstract: To understand the mechanical type corresponding to the measured signal and the distribution of the
                 corresponding type of collar wave in the drill collar, this paper compares the theoretically simulated acoustic
                 logging while drilling (LWD) waveform with the experimental waveform. Unlike predecessors who consider
                 piezoelectric effect or borehole propagation effect alone, when simulating the response of monopole acoustic
                 LWD, the transmitter, receiver, smooth drill collar and borehole structure are taken as a whole and the finite
                 element method was used to calculate and simulate the sound pressure signal and displacement signal recorded
                 by the receiver under the excitation of the voltage source. Comparing the simulated sound pressure waveform
                 with the voltage signal, we find that the relative amplitudes of the collar wave and Stoneley wave are quite
                 different, while the simulated radial displacement waveform is closer to the voltage signal. Further comparison
                 between the theoretical waveform and the voltage signal measured in the experiment of the small model well
                 confirms that the voltage signal is closer to the displacement signal but is significantly different from the sound
                 pressure signal. This shows that when the drill collar is smooth, the monopole acoustic LWD transducer mainly
                 senses the radial displacement signal. The research also shows that the energy of the collar wave in the sound
                 pressure signal is mainly concentrated on the inner wall of the drill collar, while the energy of the drill collar
                 wave in the radial displacement signal is mainly concentrated on the outer wall of the drill collar.
                 Keywords: Acoustic logging while drilling; Transducer; Pressure; Radial displacement; Piezoelectric

             2020-05-31 收稿; 2020-10-16 定稿
             ∗ 国家自然科学基金项目 (11734017, 11972132, 2017ZX05019006-006, 41674121, 41974136)
             作者简介: 张超 (1993– ), 女, 黑龙江人, 博士研究生, 研究方向: 随钻声波测井。
             †  通信作者 E-mail: hhs@hit.edu.cn
   5   6   7   8   9   10   11   12   13   14   15