Page 15 - 《应用声学》2020年第6期
P. 15

第 39 卷 第 6 期             张超等: 单极随钻声波测井换能器感知信号类型的研究                                          809


                               ᨛᨿฉ    ளᤰѾฉ             ᨛᨿฉ  ளᤰѾฉ              ᨛᨿฉ   ளᤰѾฉ
                             6                      6                       6

                             5                      5                       5
                           ࠄᰎηՂ  4 3              ܦԍηՂ  4 3               ͯረηՂ  4 3




                             2                      2                       2
                             1                      1                       1
                             0                      0                       0
                              0    0.1    0.2        0     0.1   0.2         0     0.1   0.2
                                  ௑ᫎ/ms                  ௑ᫎ/ms                   ௑ᫎ/ms
                             (a) ࠄᰎ฾४ႃԍηՂ  [12]    (b) ࠄᣉሥѬขᖍ४ᄊܦԍηՂ      (c) ࠄᣉሥѬขᖍ४ᄊय़ՔͯረηՂ
                                                图 7 实验信号与解析信号的对比
                                    Fig.7 Comparison of experimental signal and analytical signal
             3 结论                                                  Journal International, 2015, 202(1): 439–445.
                                                                 [7] Wang H, Fehler M, Tao G, et al. Investigation of collar
                 本文将换能器 -钻铤 -井孔 -地层视为一个整体,                         properties on data-acquisition scheme for acoustic logging-
                                                                   while-drilling[J]. Geophysics, 2016, 81(6): D611–D624.
             考虑压电和井孔传播效应,计算获得了电压脉冲激
                                                                 [8] 郑晓波. 单极和偶极随钻声波测井理论模拟与分波传播特性
             励发射换能器时的随钻声波测井响应。计算获得的                                研究 [D]. 哈尔滨: 哈尔滨工业大学, 2017.
             径向位移信号比声压信号更贴近电压波形,也与实                              [9] Yang Y F, Guan W, Hu H, et al. Numerical study of
             验采集的电压信号更相符。可见,在单极随钻声波                                the collar wave characteristics and the effects of grooves
                                                                   in acoustic logging while drilling[J]. Geophysical Journal
             测井中,换能器主要感知的是径向位移信号。研究                                International, 2017, 209(2): 749–761.
             还表明,径向位移信号中钻铤波的能量主要集中在                             [10] Ji Y J, He X, Chen H, et al. Monopole collar wave char-
             钻铤外壁,声压信号中钻铤波的能量主要集中在钻                                acteristics for acoustic logging while drilling in fast for-
                                                                   mations in the frequency and spatial domains[J]. Wave
             铤内壁。这些结论是针对光滑钻铤和井孔内充满理                                Motion, 2019, 90: 66–81.
             想流体的情况下得出的。                                        [11] Zhu Z Y, Toksöz M N, Rao R, et al. Experimental stud-
                                                                   ies of monopole, dipole, and quadrupole acoustic logging
                                                                   while drilling (LWD) with scaled borehole models[J]. Geo-
                            参 考     文   献                          physics, 2008, 73(4): E133–E143.
                                                                [12] 王军, Zhu Zhenya, 郑晓波. 多极源随钻声波测井实验分
              [1] Leggett J V, Dubinsky V, Patterson D, et al. Field test re-  析 [J]. 地球物理学报, 2016, 59(5): 1909–1919.
                 sults demonstrating improved real-time data quality in an  Wang Jun, Zhu Zhenya, Zheng Xiaobo.  Experimental
                 advanced LWD acoustic system[C]//SPE Annual Techni-  analysis on acoustic LWD with multipole source[J]. Chi-
                 cal Conference and Exhibition, Society of Petroleum En-  nese Journal of Geophysics, 2016, 59(5): 1909–1919.
                 gineers, 2001.                                 [13] He X, Wang X, Chen H. Theoretical simulations of wave
              [2] Wang T, Tang X M. Finite-difference modeling of elastic  field variation excited by a monopole within collar for
                 wave propagation: a nonsplitting perfectly matched layer  acoustic logging while drilling[J]. Wave Motion, 2017, 72:
                 approach[J]. Geophysics, 2003, 68(5): 1749–1755.  287–302.
              [3] 崔志文. 多孔介质声学模型与多极源声电效应测井和多极随                   [14] 张正鹏, 刘玉凯, 苏远大, 等. 考虑压电声源 -井孔系统的随钻
                 钻声测井的理论与数值研究 [D]. 长春: 吉林大学, 2004.                 方位声波测井数值模拟 [J]. 测井技术, 2020, 44(1): 1–7.
              [4] Zheng Y, Huang X, Toksöz M N. A finite element analysis  Zhang Zhengpeng, Liu Yukai, Su Yuanda, et al. Numeri-
                 of the effects of tool eccentricity on wave dispersion prop-  cal simulation of azimuthal acoustic LWD under a piezo-
                 erties in borehole acoustic logging while drilling[C]//SEG  electric source-wellbore system[J]. Well Logging Technol-
                 Annual Meeting, Society of Exploration Geophysicists,  ogy, 2020, 44(1): 1–7.
                 2004.                                          [15] 王耀俊, 袁忆丰. 超声换能器背衬材料的声学性能 [J]. 无损检
              [5] Sinha B K, Simsek E, Asvadurov S. Influence of a  测, 1989, 11(8): 221–223.
                 pipe tool on borehole modes[J]. Geophysics, 2009, 74(3):  Wang Yaojun, Yuan Yifeng. Acoustic properties of back-
                 E111–E123.                                        ing material of ultrasonic transducer[J]. Nondestructive
              [6] Su Y D, Tang X M, Xu S, et al. Acoustic isolation of  Testing, 1989, 11(8): 221–223.
                 a monopole logging while drilling tool by combining nat-  [16] 杨玉峰. 随钻声测井三维有限差分模拟与钻铤刻槽隔声性能
                 ural stopbands of pipe extensional waves[J]. Geophysical  研究 [D]. 哈尔滨: 哈尔滨工业大学, 2019.
   10   11   12   13   14   15   16   17   18   19   20