Page 15 - 《应用声学》2020年第6期
P. 15
第 39 卷 第 6 期 张超等: 单极随钻声波测井换能器感知信号类型的研究 809
ᨛᨿฉ ளᤰѾฉ ᨛᨿฉ ளᤰѾฉ ᨛᨿฉ ளᤰѾฉ
6 6 6
5 5 5
ࠄᰎηՂ 4 3 ܦԍηՂ 4 3 ͯረηՂ 4 3
2 2 2
1 1 1
0 0 0
0 0.1 0.2 0 0.1 0.2 0 0.1 0.2
ᫎ/ms ᫎ/ms ᫎ/ms
(a) ࠄᰎ४ႃԍηՂ [12] (b) ࠄᣉሥѬขᖍ४ᄊܦԍηՂ (c) ࠄᣉሥѬขᖍ४ᄊय़ՔͯረηՂ
图 7 实验信号与解析信号的对比
Fig.7 Comparison of experimental signal and analytical signal
3 结论 Journal International, 2015, 202(1): 439–445.
[7] Wang H, Fehler M, Tao G, et al. Investigation of collar
本文将换能器 -钻铤 -井孔 -地层视为一个整体, properties on data-acquisition scheme for acoustic logging-
while-drilling[J]. Geophysics, 2016, 81(6): D611–D624.
考虑压电和井孔传播效应,计算获得了电压脉冲激
[8] 郑晓波. 单极和偶极随钻声波测井理论模拟与分波传播特性
励发射换能器时的随钻声波测井响应。计算获得的 研究 [D]. 哈尔滨: 哈尔滨工业大学, 2017.
径向位移信号比声压信号更贴近电压波形,也与实 [9] Yang Y F, Guan W, Hu H, et al. Numerical study of
验采集的电压信号更相符。可见,在单极随钻声波 the collar wave characteristics and the effects of grooves
in acoustic logging while drilling[J]. Geophysical Journal
测井中,换能器主要感知的是径向位移信号。研究 International, 2017, 209(2): 749–761.
还表明,径向位移信号中钻铤波的能量主要集中在 [10] Ji Y J, He X, Chen H, et al. Monopole collar wave char-
钻铤外壁,声压信号中钻铤波的能量主要集中在钻 acteristics for acoustic logging while drilling in fast for-
mations in the frequency and spatial domains[J]. Wave
铤内壁。这些结论是针对光滑钻铤和井孔内充满理 Motion, 2019, 90: 66–81.
想流体的情况下得出的。 [11] Zhu Z Y, Toksöz M N, Rao R, et al. Experimental stud-
ies of monopole, dipole, and quadrupole acoustic logging
while drilling (LWD) with scaled borehole models[J]. Geo-
参 考 文 献 physics, 2008, 73(4): E133–E143.
[12] 王军, Zhu Zhenya, 郑晓波. 多极源随钻声波测井实验分
[1] Leggett J V, Dubinsky V, Patterson D, et al. Field test re- 析 [J]. 地球物理学报, 2016, 59(5): 1909–1919.
sults demonstrating improved real-time data quality in an Wang Jun, Zhu Zhenya, Zheng Xiaobo. Experimental
advanced LWD acoustic system[C]//SPE Annual Techni- analysis on acoustic LWD with multipole source[J]. Chi-
cal Conference and Exhibition, Society of Petroleum En- nese Journal of Geophysics, 2016, 59(5): 1909–1919.
gineers, 2001. [13] He X, Wang X, Chen H. Theoretical simulations of wave
[2] Wang T, Tang X M. Finite-difference modeling of elastic field variation excited by a monopole within collar for
wave propagation: a nonsplitting perfectly matched layer acoustic logging while drilling[J]. Wave Motion, 2017, 72:
approach[J]. Geophysics, 2003, 68(5): 1749–1755. 287–302.
[3] 崔志文. 多孔介质声学模型与多极源声电效应测井和多极随 [14] 张正鹏, 刘玉凯, 苏远大, 等. 考虑压电声源 -井孔系统的随钻
钻声测井的理论与数值研究 [D]. 长春: 吉林大学, 2004. 方位声波测井数值模拟 [J]. 测井技术, 2020, 44(1): 1–7.
[4] Zheng Y, Huang X, Toksöz M N. A finite element analysis Zhang Zhengpeng, Liu Yukai, Su Yuanda, et al. Numeri-
of the effects of tool eccentricity on wave dispersion prop- cal simulation of azimuthal acoustic LWD under a piezo-
erties in borehole acoustic logging while drilling[C]//SEG electric source-wellbore system[J]. Well Logging Technol-
Annual Meeting, Society of Exploration Geophysicists, ogy, 2020, 44(1): 1–7.
2004. [15] 王耀俊, 袁忆丰. 超声换能器背衬材料的声学性能 [J]. 无损检
[5] Sinha B K, Simsek E, Asvadurov S. Influence of a 测, 1989, 11(8): 221–223.
pipe tool on borehole modes[J]. Geophysics, 2009, 74(3): Wang Yaojun, Yuan Yifeng. Acoustic properties of back-
E111–E123. ing material of ultrasonic transducer[J]. Nondestructive
[6] Su Y D, Tang X M, Xu S, et al. Acoustic isolation of Testing, 1989, 11(8): 221–223.
a monopole logging while drilling tool by combining nat- [16] 杨玉峰. 随钻声测井三维有限差分模拟与钻铤刻槽隔声性能
ural stopbands of pipe extensional waves[J]. Geophysical 研究 [D]. 哈尔滨: 哈尔滨工业大学, 2019.