Page 145 - 《应用声学》2021年第1期
P. 145

第 40 卷 第 1 期             李悦等: 非高斯环境下的深度学习脉冲信号去噪与重构                                          141


                                                                 [5] Meng Z, Li J, Zhao Y, et al. Conditional teacher-student
             5 结论                                                  learning[C]//IEEE International Conference on Acous-
                                                                   tics, Speech and Signal Processing (ICASSP), 2019.
                 本文提出一种基于深度学习的能够在高斯和                             [6] Zhang K, Zuo W, Chen Y, et al. Beyond a Gaussian
                                                                   denoiser: residual learning of deep CNN for image de-
             非高斯环境噪声中增强与重构水声脉冲信号的方
                                                                   noising[J]. IEEE Transactions on Image Processing, 2017,
             法。通过建立全卷积的脉冲信号去噪模型,学习接                                26(7): 3142–3155.
             收信号 STFT特征与接收信号和纯净信号 STFT特                          [7] Guo S, Yan Z, Zhang K, et al. Toward convolutional blind
             征残差之间的映射,实现噪声抑制,最后通过逆变换                               denoising of real photographs[C]//IEEE/CVF Conference
                                                                   on Computer Vision and Pattern Recognition (CVPR),
             重构脉冲信号。仿真实验结果显示,模型可在 3 种                              2019.
             背景噪声中有效实现脉冲信号的去噪与重构,相较                              [8] 孟庆松, 王彬, 邵高平. α 稳定分布噪声下水声线性调频信号
             传统的 LMS 滤波方法获得了更加优越的性能。通                              的识别 [J]. 系统工程与电子技术, 2018, 40(7): 1449–1456.
                                                                   Meng Qingsong, Wang Bin, Shao Gaoping. Recognition
             过在实测数据上的测试,模型显示了在实测数据上                                of underwater acoustic linear frequency modulation sig-
             较好的泛化性,体现了一定的工程应用前景。                                  nals in α stable distribution noise[J]. System Engineering
                                                                   and Electronics, 2018, 40(7): 1449–1456.
                                                                 [9] 宋国丽, 郭新毅, 马力. 海洋环境噪声中的 α 稳定分布模
                            参 考     文   献                          型 [J]. 声学学报, 2019, 44(2): 177–188.
                                                                   Song Guoli, Guo Xinyi, Ma Li.  α-stable distribution
                                                                   model in ocean ambient noise[J]. Acta Acustica, 2019,
              [1] 张安清, 邱天爽, 章新华. α 稳定分布的水声信号处理新方                   44(2): 177–188.
                 法 [J]. 电子与信息学报, 2005, 12(8): 1201–1204.        [10] 宋国丽. 南海北部海洋环境噪声时空差异与非高斯特性研
                 Zhang Anqing, Qiu Tianshuang, Zhang Xinhua. A new  究 [D]. 北京: 中国科学院大学, 2018.
                 underwater acoustic signal processing approach to α-  [11] 张亚蕊. Alpha 稳定分布噪声衰落信道下调制信号识别 [D].
                 stable distribution[J]. Journal of Electronics & Informa-  西安: 西安电子科技大学, 2017.
                 tion Technology, 2005, 12(8): 1201–1204.       [12] 吴国清. 周期性局部平稳过程双重谱图分析和测量 [J]. 声学
              [2] Kounovsky T, Malek J. Single channel speech enhance-  学报, 1980, 12(2): 100–109.
                 ment using convolutional neural network[C]. Proceedings  Wu Guoqing. Analysis and measurement of double spec-
                 of the 2017 IEEE International Workshop of Electronics,  tra of periodic local stationary process[J]. Acta Acustica,
                 Control, Measurement, Signals and their Application to  1980, 12(2): 100–109.
                 Mechatronics (ECMSM), 2017.                    [13] 徐景峰, 韩树平, 舒象兰, 等. 非平稳噪声背景下瞬态声脉冲
              [3] Park S R, Lee J. A fully convolutional neural network for  检测新方法 [J]. 声学学报, 2016, 41(3): 362–370.
                 speech enhancement[J]. Proceedings of the Annual Con-  Xu Jingfeng, Han Shuping, Shu Xianglan, et al. A new
                 ference of the International Speech Communication Asso-  method of transient acoustic pulse detection under the
                 ciation (INTERSPEECH), 2017: 1993–1997.           nonstationary noise background[J]. Acta Acustica, 2016,
              [4] Hao X, Shan C, Yong Xu, et al. An attention-based neu-  41(3): 362–370.
                 ral network approach for single channel speech enhance-  [14] Glacier Bay National Park & Preserve. Sounds recorded
                 ment[C]// IEEE International Conference on Acoustics,  in glacier bay[EB/OL]. [2019–02–19].  [2020–04–28].
                 Speech and Signal Processing (ICASSP), 2019.      https://www.nps.gov/glba/learn/nature/soundclips.htm.
   140   141   142   143   144   145   146   147   148   149   150