Page 118 - 《应用声学》2021年第2期
P. 118
286 2021 年 3 月
[8] 沈远海, 马远良, 屠庆平, 等. 浅水声速剖面用经验正交函 algorithms for improving efficiency of searching global op-
数 (EOF) 表示的可行性研究 [J]. 应用声学, 1999, 18(20): timum[J]. Information and Control , 2001, 30(6): 526–530,
21–25. 542.
Shen Yuanhai, Ma Yuanliang, Tu Qingping, et al. Feasi- [13] Ling Q, Wu G, Yang Z, et al. Crowding clustering ge-
bility of description of the sound speed profile in shallow netic algorithm for multimodal function optimization[J].
water via empirical orthogonal function (EOF)[J]. Journal Applied Soft Computing, 2008, 8(1): 88–95.
of Appuied Acoustics, 1999, 18(20): 21–25. [14] 李军华, 黎明, 袁丽华. 基于个体相似度交叉率自适应的遗传
[9] Deb K, Goldberg D E. An investigation of niche and 算法 [J]. 系统工程, 2006, 24(9): 108–111.
species formation in genetic function optimization[C]. Pro- Li Junhua, Li Ming, Yuan Lihua. The genetic algorithms
ceedings Third ICGA, Morgan Kaufmann, San Mateo, with adaptive crossover rate based on individuals’ simi-
CA, 1989: 42–50. larity[J]. Systems Engineering, 2006, 24(9): 108–111.
[10] Malfoud S W. Niche methods for genetic algorithms[D]. [15] 张维. 三维浅海环境下全海深声速剖面快速反演研究 [D]. 哈
Illinois: University of Illinois, Urbana-Champain, 1995. 尔滨: 哈尔滨工程大学, 2013.
[11] Rudolph G. Convergence analysis of canonical genetic [16] 笪良龙, 过武宏, 赵建昕, 等. 海洋 -声学耦合模式捕捉水声环
algorithms [J]. IEEE Transactionson Neural Networks, 境不确定性 [J]. 声学学报, 2015, 40(3): 477–486.
1994, 5(1): 96–101. Da Lianglong, Guo Wuhong, Zhao Jianxin, et al. Capture
[12] 喻寿益, 郭观七. 一种改善遗传算法全局搜索性能的小生境技 uncertainty of underwater environment by ocean-acoustic
术 [J]. 信息与控制, 2001, 30(6): 526–530, 542. coupled model[J]. Acta Acustica, 2015, 40(3): 477–486.
Yu Shouyi, Guo Guanqi. A class of niche used in genetic