Page 109 - 《应用声学》2021年第5期
P. 109

第 40 卷 第 5 期      卢佳敏等: 基于 DEMON 谱和 LSTM 网络的水下运动目标噪声基频检测                                    753


                 Cheng Yusheng, Qiu Jiaxing, Liu Zhen. Challenges and  Shock, 2018, 37(16): 57–61.
                 prospects of underwater acoustic passive target recogni-  [14] 吴国清, 王美刚, 陈耀明. 水声波导中包络线谱强度数值预
                 tion technology[J]. Journal of Applied Acoustics, 2019,  报 [J]. 声学学报, 2012, 37(3): 432–439.
                 38(3): 653–659.                                   Wu Guoqing, Wang Meigang, Chen Yaoming. Numerical
              [2] Nielsen R O. Cramer-rao lower bounds for sonar broad-  prediction of envelope line specturm intensity in under-
                 band modulation parameters[J]. IEEE Journal of Oceanic  water acoustic waveguide[J]. Acta Acustica, 2012, 37(3):
                 Engineering, 1999, 24(2): 285–290.                432–439.
              [3] Lourens J G, du Prcez J A. Passive sonar ml estimator  [15] 蒋国健, 林建恒, 孙军平, 等. 海洋信道随机性引起的船舶噪
                 for ship propeller speed[J]. IEEE Journal of Oceanic En-  声线谱衰减 [J]. 声学学报, 2015, 40(1): 170–177.
                 gineering, 1998, 23(3): 448–453.                  Jiang Guojian, Lin Jianheng, Sun Junping, et al. At-
              [4] Song L, Yang D, Zhang H. Experimental study of under-  tenuation of ship noise line-spectrum caused by the ran-
                 water propeller low-frequency noise flied[C]. IEEE/OES  domness of ocean channel[J]. Acta Acustica, 2015, 40(1):
                 China Ocean Acoustics, 2016.                      170–177.
              [5] 杨宏, 李亚安, 李国辉. 基于集合经验模态分解的舰船辐射噪                [16] 刘振, 邱家兴, 程玉胜. 深度神经网络在螺旋桨叶片数识别中
                 声能量分析 [J]. 振动与冲击, 2015, 34(16): 55–59.            的应用 [J]. 声学技术, 2019, 38(3): 459–463.
                 Yang Hong, Li Ya’an, Li Guohui. Energy analysis of ship  Liu Zhen, Qiu Jiaxing, Cheng Yusheng. Application of
                 radiated noise based on ensemble empirical mode decom-  deep neural network in blade-number recognition of ship
                 position[J]. Journal of Vibration and Shock, 2015, 34(16):  propeller[J]. Technical Acoustics, 2019, 38(3): 459–463.
                 55–59.                                         [17] 朱可卿, 田杰, 黄海宁, 等. 基于深度学习的船舶辐射噪声识
              [6] Pollara A, Sutin A, Salloum H. Improvement of the detec-  别研究 [J]. 应用声学, 2018, 37(1): 238–245.
                 tion of envelope modulation on noise (DEMON) and its  Zhu Keqing, Tian Jie, Huang Haining, et al. Ship-radiated
                 application to small boats[C]. OCEANS 2016 MTS/IEEE  noise recognition research based deep learning[J]. Journal
                 Monterey. IEEE, 2016.                             of Applied Acoustics, 2018, 37(1): 238–245.
              [7] 殷敬伟, 惠俊英, 姚直象, 等. 基于 DEMON 线谱的轴频提取            [18] 王鹏. 基于深度神经网络的水中目标识别研究 [D]. 哈尔滨:
                 方法研究 [J]. 应用声学, 2005, 24(5): 369–374.             哈尔滨工程大学, 2018.
                 Yin Jingwei, Hui Junying, Yao Zhixiang, et al. Extraction  [19] Artusi E, Chaillanb F. Automatic recognition of underwa-
                 of shaft frequency based on the DEMON line spectrum[J].  ter acoustic signature for naval applications[C]. Maritime
                 Journal of Applied Acoustics, 2005, 24(5): 369–374.  Situational Awareness Workshop, 2019.
              [8] 童峰, 陆佶人, 方世良. 水声目标识别中一种轴频提取方法 [J].            [20] 陈越超, 徐晓男. 基于降噪自编码器的水中目标识别方法 [J].
                 声学学报, 2004, 29(4): 398–402.                       声学与电子工程, 2018(1): 30–33.
                 Tong Feng, Lu Jiren, Fang Shiliang. A method to estimate  [21] 张少康, 王超, 田德艳, 等. 长短时记忆网络水下目标噪声智
                 the propeller shaft rate in underwater acoustic vessel clas-  能识别方法 [J]. 舰船科学技术, 2019, 41(23): 181–185.
                 sification[J]. Acta Acustica, 2004, 29(4): 398–402.  Zhang Shaokang, Wang Chao, Tian Deyan, et al. Intelli-
              [9] 骆国强, 尚金涛, 杨柳. 一种时频综合的 DEMON 谱融合方                 gent recognition of underwater target noise based on long
                 法 [C]. 2016’ 中国西部声学学术交流会论文集, 2016.                short-term memory networks[J]. Ship Science and tech-
             [10] 高鑫, 程玉胜. 舰船螺旋桨轴频估计中线谱要素提取算法 [J].                 nology, 2019, 41(23): 181–185.
                 应用声学, 2010, 29(5): 443–448.                    [22] 张少康, 王超, 孙芹东. 基于多类别特征融合的水声目标噪声
                 Gao Xin, Cheng Yusheng. A line spectrum element ex-  识别分类技术 [J]. 西北工业大学学报, 2020, 38(1): 366–376.
                 traction algorithm in ship-prpeller-shaft frequency esti-  Zhang Shaokang, Wang Chao, Sun Qindong. Underwa-
                 mations[J]. Journal of Applied Acoustics, 2010, 29(5):  ter target noise recognition and classification technology
                 443–448.                                          based on multi-classes feature fusion[J]. Journal of North-
             [11] Hanson D, Antoni J, Brown G, et al. Cyclostationarity for  western Polytechnical University, 2020, 38(1): 366–376.
                 passive underwater detection of propeller craft: a develop-  [23] Tang Z, Kanu J, Manocha D, et al. Regression and clas-
                 ment of DEMON processing[J]. Proceedings of Acoustics,  sification for direction-of-arrival estimation with convolu-
                 2008: 1–6.                                        tional recurrent neural networks[C]. Interspeech, 2019.
             [12] 白敬贤, 高天德, 夏润鹏. 基于 DEMON 谱信息提取算法的目             [24] van den Oord A, Kalchbrenner N, et al. Pixel recurrent
                 标识别方法研究 [J]. 声学技术, 2017, 36(1): 88–92.            neural networks[C]. International Conference on Machine
                 Bai Jingxian, Gao Tiande, Xia Runpeng. Target recog-  Learning, 2016.
                 nition based on the information extraction algorithm of  [25] Gonzalez S, Brookes M. PEFAC—A pitch estimation algo-
                 DEMON spectrum[J]. Technical Acoustics, 2017, 36(1):  rithm robust to high levels of noise[J]. IEEE ACM Trans-
                 88–92.                                            actions on Audio Speech and Language Processing, 2014,
             [13] 杨日杰, 郑晓庆, 韩建辉, 等. 基于序列匹配的螺旋桨轴频自                  22(1): 518–530.
                 动提取方法 [J]. 振动与冲击, 2018, 37(16): 57–61.         [26] Lu J, Song S, Hu Z, et al. Fundamental frequency detec-
                 Yang Rijie, Zheng Xiaoqing, Han Jianhui, et al. An au-  tion of underwater acoustic target using DEMON spec-
                 tomatic extraction method of propeller shaft frequency  trum and CNN network[C]. IEEE International Confer-
                 based on sequence matching[J]. Journal of Vibration and  ence on Unmanned Systems, 2020.
   104   105   106   107   108   109   110   111   112   113   114