Page 79 - 《应用声学》2021年第5期
P. 79
第 40 卷 第 5 期 Vol. 40, No. 5
2021 年 9 月 Journal of Applied Acoustics September, 2021
⋄ 研究报告 ⋄
基于广义回归神经网络的强干扰下垂直阵
目标距离估计方法 ∗
姚琦海 汪 勇 † 黎佳艺 杨益新
(西北工业大学航海学院 西安 710072)
摘要:以声压场采样协方差矩阵为特征,基于广义回归神经网络研究在强干扰下的水下声源测距问题,该文
提出了优化扩展因子的方法以提高神经网络估计性能。使用仅有一个网络参数的广义回归神经网络,使用
SWellEX-96 实验 S59 航次的垂直阵数据,比较了以传统匹配场处理为代表的模型驱动方法和以卷积神经网
络、广义回归神经网络为代表的数据驱动方法在强干扰下的水下目标距离估计性能。结果表明,基于优化扩展
因子的广义回归神经网络在强干扰下可以有效实现距离估计。
关键词:距离估计;强干扰;垂直阵;广义回归神经网络
中图法分类号: TB533 文献标识码: A 文章编号: 1000-310X(2021)05-0723-08
DOI: 10.11684/j.issn.1000-310X.2021.05.010
Source range estimation method of vertical array under strong
interference based on GRNN
YAO Qihai WANG Yong LI Jiayi YANG Yixin
(School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an 710072, China)
Abstract: The sample covariance matrix of sound pressure field is made as the feature. The research on
underwater sound source ranging under strong interference based on generalized regression neural network
(GRNN), which has only one network parameter, extension factor. It proposes a method of optimizing the
extension factor to improve the estimation performance of neural network. The research uses the vector line
array (VLA) data from event S59 of the SWellEx-96 experiment, comparing the range estimation performance
of underwater targets under strong interference of model-driven traditional matched field processing, data-
driven convolutional neural networks (CNN) and GRNN. The results show that GRNN based on the optimized
extension factor can effectively realize the estimation of range under strong interference.
Keywords: Range estimation; Strong interference; Vector line array; Generalized regression neural network
2020-11-13 收稿; 2021-01-24 定稿
国家自然科学基金项目 (61971353)
∗
作者简介: 姚琦海 (1997– ), 男, 陕西西安人, 硕士研究生, 研究方向: 信号与信息处理。
† 通信作者 E-mail: yongwang@nwpu.edu.cn