Page 145 - 《应用声学》2022年第1期
P. 145

第 41 卷 第 1 期              李倩岩等: 平面波经颅超声成像相位校正及散斑跟踪                                          141


                                                                   and deep learning approach[J]. Computer Methods and
             4 结论                                                  Programs in Biomedicine, 2020, 186: 105308.
                                                                 [7] Bercoff J, Montaldo G, Loupas T, et al. Ultrafast com-
                 本文利用超声平面波多角度相干复合方法对                               pound doppler imaging: providing full blood flow char-
             颅内目标进行成像,在高帧频图像序列基础上利用                                acterization[J]. IEEE Transactions on Ultrasonics, Ferro-
                                                                   electrics, and Frequency Control, 2011, 58(1): 134–147.
             散斑跟踪法估算目标的位移或速度矢量。针对颅骨
                                                                 [8] Mac E, Montaldo G, Cohen I, et al. Functional ultra-
             造成的超声相位畸变,利用由 CT 图像获取的颅骨                              sound imaging of the brain[J]. Nature Methods, 2011,
             声速先验模型,采用近似射线声学理论方法进行校                                8(8): 662–664.
                                                                 [9] Rabut C, Correia M, Finel V, et al. 4D functional ultra-
             正。数值仿真结果表明,颅骨的存在会使目标点对
                                                                   sound imaging of whole-brain activity in rodents[J]. Na-
             应的图像散斑偏离实际位置,同时分辨率和对比度                                ture Methods, 2019, 16(10): 994–997.
             降低,图像质量的下降导致对运动目标位移/速度的                            [10] 胡陈文宝. 基于多角度平面波复合的脑成像技术研究 [D]. 深
             估算误差高达54.98%。基于准确的颅骨声速先验模                             圳: 中国科学院深圳先进技术研究院, 2018.
                                                                [11] Errico C, Pierre J, Pezet S, et al. Ultrafast ultrasound
             型,利用近似的射线声学理论方法可以改善成像效                                localization microscopy for deep super-resolution vascular
             果,在校正目标点图像位置偏差的同时,目标点运动                               imaging[J]. Nature, 2015, 527(7579): 499–502.
             位移/速度的大小和方向估计精度提升近 40%。体                           [12] Osmanski B F, Pezet S, Ricobaraza A, et al. Functional
                                                                   ultrasound imaging of intrinsic connectivity in the living
             模实验中对目标位移大小和角度估计的平均误差
                                                                   rat brain with high spatiotemporal resolution[J]. Nature
             在校正前分别为 16.5% 和 27.7%,校正后降至 1.1%                      Communications, 2014, 5(1): 1–14.
             和1.4%。进一步验证了相位校正的效果。                               [13] Errico C, Osmanski B F, Pezet S, et al. Transcranial func-
                                                                   tional ultrasound imaging of the brain using microbubble-
             致谢 文中数值仿真所用颅脑 CT 图像由浙江大学                              enhanced ultrasensitive Doppler[J]. NeuroImage, 2016,
             医学院附属第四医院提供。                                          124: 752–761.
                                                                [14] Vignon F, Aubry J F, Tanter M, et al. Adaptive focusing
                                                                   for transcranial ultrasound imaging using dual arrays[J].
                                                                   The Journal of the Acoustical Society of America, 2006,
                            参 考     文   献
                                                                   120(5): 2737–2745.
                                                                [15] Guasch L, Agudo O C, Tang M X, et al. Full-waveform
              [1] Ding B, Ling H, Zhang Y, et al. Pattern of cerebral hyper-  inversion imaging of the human brain[J]. NPJ Digital
                 perfusion in Alzheimer’s disease and amnestic mild cogni-  Medicine, 2020, 3(1): 1–12.
                 tive impairment using voxel-based analysis of 3D arterial  [16] Aubry J F, Tanter M, Pernot M, et al. Experimental
                 spin-labeling imaging: initial experience[J]. Clinical Inter-  demonstration of noninvasive transskull adaptive focusing
                 ventions in Aging, 2014, 9: 493–500.              based on prior computed tomography scans[J]. The Jour-
              [2] Ezzeddine M A, Lev M H, McDonald C T, et al. CT  nal of the Acoustical Society of America, 2003, 113(1):
                 angiography with whole brain perfused blood volume  84–93.
                 imaging: added clinical value in the assessment of acute  [17] Soulioti D E, Espíndola D, Dayton P A, et al. Super-
                 stroke[J]. Stroke: Journal of the American Heart Associa-  resolution imaging through the human skull[J]. IEEE
                 tion, 2002, 33(4): 959–966.                       Transactions on Ultrasonics, Ferroelectrics, and Fre-
              [3] Tregaskiss A P, Goodwin A N, Bright L D, et al.  quency Control, 2019, 67(1): 25–36.
                 Three‐dimensional CT angiography:  a new technique  [18] Jones R M, Hynynen K. Comparison of analytical and
                 for imaging microvascular anatomy[J]. Clinical Anatomy:  numerical approaches for CT-based aberration correction
                 The Official Journal of the American Association of Clin-  in transcranial passive acoustic imaging[J]. Physics in
                 ical Anatomists and the British Association of Clinical  Medicine & Biology, 2016, 61(1): 23–36.
                 Anatomists, 2007, 20(2): 116–123.              [19] 宋亚龙, 苏畅, 李倩岩, 等. 超声平面波经颅成像相位校正方
              [4] Guan J, Karsy M, McNally S, et al. High-resolution mag-  法 [J]. 应用声学, 2021, 40(1): 1–10.
                 netic resonance imaging of intracranial aneurysms treated  Song Yalong, Su Chang, Li Qianyan, et al.  A study
                 by flow diversion[J]. Interdisciplinary Neurosurgery: Ad-  on the phase correction method in transcranial ultra-
                 vanced Techniques and Case Management, 2017, 10:  sound plane-wave imaging[J]. Journal of Applied Acous-
                 69–74.                                            tics, 2021, 40(1): 1–10.
              [5] Purkayastha S, Sorond F. Transcranial Doppler ultra-  [20] Wang T, Jing Y. Transcranial ultrasound imaging with
                 sound: technique and application[J]. Seminars in Neurol-  speed of sound-based phase correction:  a numerical
                 ogy, 2012, 32(4): 411–420.                        study[J]. Physics in Medicine & Biology, 2013, 58(19):
              [6] Du B, Wang J, Zheng H, et al. A novel transcranial ultra-  6663.
                 sound imaging method with diverging wave transmission  [21] Sukhoruchkin D A, Yuldashev P V, Tsysar S A, et al. Use
   140   141   142   143   144   145   146   147   148   149   150