Page 145 - 《应用声学》2022年第1期
P. 145
第 41 卷 第 1 期 李倩岩等: 平面波经颅超声成像相位校正及散斑跟踪 141
and deep learning approach[J]. Computer Methods and
4 结论 Programs in Biomedicine, 2020, 186: 105308.
[7] Bercoff J, Montaldo G, Loupas T, et al. Ultrafast com-
本文利用超声平面波多角度相干复合方法对 pound doppler imaging: providing full blood flow char-
颅内目标进行成像,在高帧频图像序列基础上利用 acterization[J]. IEEE Transactions on Ultrasonics, Ferro-
electrics, and Frequency Control, 2011, 58(1): 134–147.
散斑跟踪法估算目标的位移或速度矢量。针对颅骨
[8] Mac E, Montaldo G, Cohen I, et al. Functional ultra-
造成的超声相位畸变,利用由 CT 图像获取的颅骨 sound imaging of the brain[J]. Nature Methods, 2011,
声速先验模型,采用近似射线声学理论方法进行校 8(8): 662–664.
[9] Rabut C, Correia M, Finel V, et al. 4D functional ultra-
正。数值仿真结果表明,颅骨的存在会使目标点对
sound imaging of whole-brain activity in rodents[J]. Na-
应的图像散斑偏离实际位置,同时分辨率和对比度 ture Methods, 2019, 16(10): 994–997.
降低,图像质量的下降导致对运动目标位移/速度的 [10] 胡陈文宝. 基于多角度平面波复合的脑成像技术研究 [D]. 深
估算误差高达54.98%。基于准确的颅骨声速先验模 圳: 中国科学院深圳先进技术研究院, 2018.
[11] Errico C, Pierre J, Pezet S, et al. Ultrafast ultrasound
型,利用近似的射线声学理论方法可以改善成像效 localization microscopy for deep super-resolution vascular
果,在校正目标点图像位置偏差的同时,目标点运动 imaging[J]. Nature, 2015, 527(7579): 499–502.
位移/速度的大小和方向估计精度提升近 40%。体 [12] Osmanski B F, Pezet S, Ricobaraza A, et al. Functional
ultrasound imaging of intrinsic connectivity in the living
模实验中对目标位移大小和角度估计的平均误差
rat brain with high spatiotemporal resolution[J]. Nature
在校正前分别为 16.5% 和 27.7%,校正后降至 1.1% Communications, 2014, 5(1): 1–14.
和1.4%。进一步验证了相位校正的效果。 [13] Errico C, Osmanski B F, Pezet S, et al. Transcranial func-
tional ultrasound imaging of the brain using microbubble-
致谢 文中数值仿真所用颅脑 CT 图像由浙江大学 enhanced ultrasensitive Doppler[J]. NeuroImage, 2016,
医学院附属第四医院提供。 124: 752–761.
[14] Vignon F, Aubry J F, Tanter M, et al. Adaptive focusing
for transcranial ultrasound imaging using dual arrays[J].
The Journal of the Acoustical Society of America, 2006,
参 考 文 献
120(5): 2737–2745.
[15] Guasch L, Agudo O C, Tang M X, et al. Full-waveform
[1] Ding B, Ling H, Zhang Y, et al. Pattern of cerebral hyper- inversion imaging of the human brain[J]. NPJ Digital
perfusion in Alzheimer’s disease and amnestic mild cogni- Medicine, 2020, 3(1): 1–12.
tive impairment using voxel-based analysis of 3D arterial [16] Aubry J F, Tanter M, Pernot M, et al. Experimental
spin-labeling imaging: initial experience[J]. Clinical Inter- demonstration of noninvasive transskull adaptive focusing
ventions in Aging, 2014, 9: 493–500. based on prior computed tomography scans[J]. The Jour-
[2] Ezzeddine M A, Lev M H, McDonald C T, et al. CT nal of the Acoustical Society of America, 2003, 113(1):
angiography with whole brain perfused blood volume 84–93.
imaging: added clinical value in the assessment of acute [17] Soulioti D E, Espíndola D, Dayton P A, et al. Super-
stroke[J]. Stroke: Journal of the American Heart Associa- resolution imaging through the human skull[J]. IEEE
tion, 2002, 33(4): 959–966. Transactions on Ultrasonics, Ferroelectrics, and Fre-
[3] Tregaskiss A P, Goodwin A N, Bright L D, et al. quency Control, 2019, 67(1): 25–36.
Three‐dimensional CT angiography: a new technique [18] Jones R M, Hynynen K. Comparison of analytical and
for imaging microvascular anatomy[J]. Clinical Anatomy: numerical approaches for CT-based aberration correction
The Official Journal of the American Association of Clin- in transcranial passive acoustic imaging[J]. Physics in
ical Anatomists and the British Association of Clinical Medicine & Biology, 2016, 61(1): 23–36.
Anatomists, 2007, 20(2): 116–123. [19] 宋亚龙, 苏畅, 李倩岩, 等. 超声平面波经颅成像相位校正方
[4] Guan J, Karsy M, McNally S, et al. High-resolution mag- 法 [J]. 应用声学, 2021, 40(1): 1–10.
netic resonance imaging of intracranial aneurysms treated Song Yalong, Su Chang, Li Qianyan, et al. A study
by flow diversion[J]. Interdisciplinary Neurosurgery: Ad- on the phase correction method in transcranial ultra-
vanced Techniques and Case Management, 2017, 10: sound plane-wave imaging[J]. Journal of Applied Acous-
69–74. tics, 2021, 40(1): 1–10.
[5] Purkayastha S, Sorond F. Transcranial Doppler ultra- [20] Wang T, Jing Y. Transcranial ultrasound imaging with
sound: technique and application[J]. Seminars in Neurol- speed of sound-based phase correction: a numerical
ogy, 2012, 32(4): 411–420. study[J]. Physics in Medicine & Biology, 2013, 58(19):
[6] Du B, Wang J, Zheng H, et al. A novel transcranial ultra- 6663.
sound imaging method with diverging wave transmission [21] Sukhoruchkin D A, Yuldashev P V, Tsysar S A, et al. Use