Page 13 - 《应该声学》2022年第2期
P. 13

第 41 卷 第 2 期        康坊等: 子带 t 分布的快速独立向量分析在语声盲源分离中的应用                                        181


             [10] Liang Y, Naqvi S M, Chambers J. Overcoming block per-  [13] Nakamura S, Hiyane K, Asano F, et al.  Acous-
                 mutation problem in frequency domain blind source sepa-  tical sound database in real environments for sound
                 ration when using AuxIVA algorithm[J]. Electronics Let-  scene understanding and hands-free speech recogni-
                 ters, 2012, 48(8): 460–462.                       tion[C]//International Conference on Language Resources
             [11] Scheibler R, Ono N. Fast and stable blind source sepa-  and Evaluation (LREC), 2000: 965–968.
                 ration with Rank-1 updates[C]//2020 IEEE International  [14] Garofolo J S, Lamel L F, Fisher W M, et al. DARPA
                 Conference on Acoustics, Speech and Signal Processing  TIMIT acoustic-phonetic continous speech corpus CD-
                 (ICASSP). IEEE, 2020: 236–240.                    ROM. NIST speech disc 1–1.1[R]. NASA STI/Recon Tech-
             [12] Harris J, Rivet B, Naqvi S M, et al.  Real-time inde-  nical Report N, 1993.
                 pendent vector analysis with student’s t source prior for  [15] Vincent E, Gribonval R, Févotte C. Performance mea-
                 convolutive speech mixtures[C]//2015 IEEE International  surement in blind audio source separation[J]. IEEE Trans-
                 Conference on Acoustics, Speech and Signal Processing  actions on Audio, Speech & Language Processing, 2006,
                 (ICASSP). IEEE, 2015: 1856–1860.                  14(4): 1462–1469.
   8   9   10   11   12   13   14   15   16   17   18