Page 149 - 《应该声学》2022年第2期
P. 149

第 41 卷 第 2 期                朱祖扬: 随钻单极子声波测井模式优化及远探测                                          317


             传播特征,使用单极子声源发射和偏极子接收器接                                conventional and unconventional reservoirs[C]. SPE An-
             收的测量模式,获得了反射波到时和反射波幅度的                                nual Technical Conference and Exhibition, 2011.
                                                                [11] Mickael M, Barnett C, Diab M. Azimuthally focused LWD
             变化规律,反射波具有方位性;研制了随钻声波测量
                                                                   sonic logging for shear wave anisotrophy measurement and
             装置,在水池里开展了随钻单极子声波远探测实验,                               borehole imaging[C]. SPE Annual Technical Conference
             测量到了 1.00 m、3.00 m、5.00 m 和 7.00 m 的反射                and Exhibition, 2012.
                                                                [12] 陈俊圆, 唐晓明, 苏远大, 等. 随钻方位声波发射换能器性能
             界面距离,测量结果可靠。
                                                                   数值模拟分析 [J]. 测井技术, 2017, 41(3): 256–259.
                 (3) 虽然随钻单极子声源是全向发射和声源没                            Chen Junyuan, Tang Xiaoming, Su Yuanda, et al. Nu-
             有方向性,但是使用单极子声源发射和偏极子接收                                merical simulation and analysis of LWD azimuthal sonic
             器接收的测量模式,则从随钻单极子声波测井数据                                transmitter’s performance[J]. Well Logging Technology,
                                                                   2007, 41(3): 256–259.
             里仍然可以提取到地层速度的方位信息,在合适尺
                                                                [13] 张正鹏, 刘玉凯, 苏远大, 等. 考虑压电声源 -井孔系统的随钻
             度范围内使用随钻单极子声源进行声波远探测是                                 方位声波测井数值模拟 [J]. 测井技术, 2020, 44(1): 1–7.
             可行的。因此随钻单极子声波测井技术在非均匀性                                Zhang Zhengpeng, Liu Yukai, Su Yuanda, et al. Numeri-
                                                                   cal simulation of azimuthal acoustic LWD under a piezo-
             地层评价和地质导向钻井等方面具有广阔的应用
                                                                   electric source-wellbore system[J]. Well Logging Technol-
             前景。                                                   ogy, 2020, 44(1): 1–7.
                                                                [14] 卫建清, 何晓, 李希强, 等. 含偏心点声源的随钻测井声场模
                                                                   拟和地层各向异性反演研究 [J]. 地球物理学报, 2019, 62(4):
                            参 考     文   献                          1554–1564.
                                                                   Wei Jianqing, He Xiao, Li Xiqiang, et al.  Simulation
                                                                   of acoustic LWD with an eccentric source and inversion
              [1] 唐晓明, 郑传汉. 定量测井声学 [M]. 北京: 石油工业出版社,               of formation anisotropy[J]. Chinese Journal of Geophys,
                 2004.                                             2019, 62(4): 1554–1564.
              [2] 王秀明, 张海澜, 何晓, 等. 声波测井中的物理问题 [J]. 物理,          [15] 陈雪莲, 魏周拓. 随钻单极子声反射测井数值模拟 [J]. 石油学
                 2011, 40(2): 79–87.                               报, 2012, 33(5): 835–840.
                 Wang Xiuming, Zhang Hailan, He Xiao, et al. Physi-  Chen Xuelian, Wei Zhoutuo.  Numerical simulation
                 cal problems in acoustic logging[J]. Physics, 2011, 40(2):  of monopole acoustic reflection imaging logging in the
                 79–87.                                            logging-while-drilling condition[J]. Acta Petrolei Sinica,
              [3] Degrange J M, Hawthorn A, Nakajima H, et al. Sonic  2012, 33(5): 835–840.
                 while drilling: multipole acoustic tools for multiple an-  [16] 朱祖扬, 吴海燕, 李永杰, 等. 钻铤结构对随钻声波测井响应
                 swers[C]. SPE128162, 2010.                        的影响 [J]. 石油钻探技术, 2016, 44(6): 117–122.
              [4] 杨锦舟, 肖红兵, 黄敬, 等. 随钻方位声波测井装置: 北京,                 Zhu Zuyang, Wu Haiyan, Li Yongjie, et al.  The ef-
                 CN202926323U[P]. 2013-05-08.                      fect of collar structure on acoustic logging response while
              [5] Tang X M, Wang T, Patterson D. Multipole acoustic  drilling[J]. Petroleum Drilling Techniques, 2016, 44(6):
                 logging-while-drilling[C]. SEG Int’l Exposition and 72nd  117–122.
                 Annual Meeting: 6–11, 2002.                    [17] 王华, 陶果, 王兵, 等. 多极子随钻声波测井波场模拟与采集
              [6] Calleha B, Market J. Multi-sensor geosteering[C]. SPWLA  模式分析 [J]. 地球物理学报, 2009, 52(9): 2402–2409.
                 51st Annual Logging Symposium, 2010.              Wang Hua, Tao Guo, Wang Bing, et al. Wave field simula-
              [7] Market J, Bilby C. Introducing the first LWD Crossed-  tion and data acquisition scheme analysis for LWD acous-
                 dipole sonic imaging service[J]. Petrophysics, 2012, 53(3):  tic tool[J]. Chinese Journal of Geophysics, 2009, 52(9):
                 208–221.                                          2402–2409.
              [8] Wang T, Dawber M, Boonen P. Theory of unipole acoustic  [18] 杨玉峰. 随钻声波测井时域有限差分模拟与钻铤波传播特性
                 logging tools and their relevance to dipole and quadrupole  研究 [D]. 哈尔滨: 哈尔滨工业大学, 2014.
                 tools for slow formation[C]. SPE Annual Technical Con-  [19] 朱留方, 沈建国. 从阵列声波测井波形处理地层纵、横波时差
                 ference and Exhibition, 2011.                     的新方法 [J]. 地球物理学进展, 2006, 21(2): 483–488.
              [9] Market J, Deady R. Azimuthal sonic measurements: new  Zhu Liufang, Shen Jianguo.  The new method of pro-
                 methods in theory and practice[C]. SPWLA 49th annual  cessing the slowness of P and S wave from waveforms of
                 Logging Symposium, 2008.                          array sonic logging[J]. Progress in Geophys, 2006, 21(2):
             [10] Pitcher J, Market J, Hinz D. Geosteering with sonic in  483–488.
   144   145   146   147   148   149   150   151   152   153   154