Page 88 - 《应该声学》2022年第2期
P. 88
256 2022 年 3 月
(2) 流噪声的能量主要集中在低频段,声压级 [10] Tan L, Zhu B, Wang Y, et al. Turbulent flow simulation
的峰值频率不受流速影响,而受充液 T 型三通管路 using large eddy simulation combined with characteristic-
based split scheme[J]. Computers & Fluids, 2014, 94:
的声学特性影响;
161–172.
(3) 流激噪声的能量主要集中在中低频段,流 [11] Zhang T, Zhang Y O, Ouyang H. Structural vibration and
激噪声频谱的峰值频率除了与充液 T 型三通管路 fluid-borne noise induced by turbulent flow through a 90 ◦
声学模态相关外,还与耦合模态固有频率值有关; piping elbow with/without a guide vane[J]. International
Journal of Pressure Vessels and Piping, 2015, 125: 66–77.
(4) 随着流速的增大,流噪声与流激噪声的幅
[12] 徐俊伟, 吴亚锋, 陈耿. 气动噪声数值计算方法的比较与应
值都增大,但流噪声增大量大于流激噪声增大量。 用 [J]. 噪声与振动控制, 2012, 32(4): 6–10.
Xu Junwei, Wu Yawei, Chen Geng. Comparison and
application on the aero-acoustics numerical computing
参 考 文 献
methods[J]. Noise and Vibration Control, 2012, 32(4):
6–10.
[1] 柯兵, 谢志强. 管路系统声学设计技术的现状及发展趋势 [J].
[13] 赵威, 彭旭, 陈明, 等. 变截面管道流噪声数值计算 [J]. 噪声
中国舰船研究, 2008, 3(2): 57–63.
与振动控制, 2016, 36(3): 48–51, 150.
Ke Bing, Xie Zhiqiang. A review of acoustic design tech-
Zhao Wei, Peng Xu, Chen Ming, et al. Numerical sim-
nologies for shipboard piping system[J]. Chinese Journal
ulation of flow-induced noise in the pipelines with vari-
of Ship Research, 2008, 3(2): 57–63.
able cross-sections[J]. Noise and Vibration Control, 2016,
[2] 戴安东, 陈刚, 朱石坚. 舰船管路振动噪声控制措施综述 [J].
36(3): 48–51, 150.
船海工程, 2001(S2): 75–78.
[14] 张咏鸥, 张涛, 刘继明, 等. 基于 Lighthill 声类比的流激噪声
[3] 郭涛. 管路的流致振动及噪声研究 [D]. 武汉: 华中科技大学,
三维计算及验证 [J]. 舰船科学技术, 2014, 36(9): 55–59, 64.
2012.
Zhang Yong’ou, Zhang Tao, Liu Jiming, et al. Three di-
[4] Pittard M T, Evans R P, Maynes R D, et al. Experimen-
mensional simulation and validation of the flow-induced
tal and numerical investigation of turbulent flow induced
noise based on lighthill’s acoustic analogy theory[J]. Ship
pipe vibration in fully developed flow[J]. Review of Scien-
Science and Technology, 2014, 36(9): 55–59, 64.
tific Instruments, 2004, 75(7): 2393.
[15] Mori M, Masumoto T, Ishihara K. Study on acoustic, vi-
[5] Etim S U. Internal fluid flow induced vibration of pipes[J].
bration and flow induced noise characteristics of t-shaped
Journal of Mechanical Design and Vibration, 2018, 6(1):
pipe with a square cross-section[J]. Applied Acoustics,
1–8.
2017, 120: 137–147.
[6] 柯兵. 管路弯头流致振动的影响因素分析 [J]. 中国舰船研究,
◦
2018, 13(2): 70–75. [16] 魏志. 阀体后 90 圆形弯管内流场和噪声的数值模拟 [D]. 上
Ke Bing. Influence factors analysis of flow-induced vibra- 海: 上海交通大学, 2013.
tion of elbow in piping system[J]. Chinese Journal of Ship [17] 方超, 蔡标华, 马士虎, 等. 基于 BEM/FEM 的船舶注水系统
Research, 2018, 13(2): 70–75. 管路噪声分离预报 [J]. 噪声与振动控制, 2018, 38(5): 89–93.
[7] 宋佳朋. 管路声传播特性及通海管路噪声源评价研究 [D]. 哈 Fang Chao, Cai Biaohua, Ma Shihu, et al. Noise separa-
尔滨: 哈尔滨工程大学, 2018. tion prediction ofwater injection pipeline systems of war-
[8] 吴石, 张文平, 柳贡民. 海水管路系统中流噪声的小室测量方 ships based on BEM/FEM[J]. Noise and Vibration Con-
法的研究 [J]. 噪声与振动控制, 2006, 26(3): 57–60. trol, 2018, 38(5): 89–93.
Wu Shi, Zhang Wenping, Liu Gongmin. Study on measur- [18] 方超, 马士虎, 蔡标华, 等. 基于 BEM 的通海阀流噪声与流激
ing chamberlet method of flow noise in seawater pipeline 振动噪声数值模拟对比研究 [J]. 舰船科学技术, 2018, 40(5):
system[J]. Noise and Vibration Control, 2006, 26(3): 30–34.
57–60. Fang Chao, Ma Shihu, Cai Biaohua, et al. Numerical sim-
[9] Zhang C, Luo Y, Liang J, et al. Flow-induced noise predic- ulation contrastive study on flow noise and flow induced
tion for 90 bend pipe by les and FW-H hybrid method[J]. vibration noise of sea valve based on BEM[J]. Ship Science
Scientific Research & Essays, 2014, 9(11): 5–12. and Technology, 2018, 40(5): 30–34.