Page 88 - 《应该声学》2022年第2期
P. 88

256                                                                                  2022 年 3 月


                 (2) 流噪声的能量主要集中在低频段,声压级                         [10] Tan L, Zhu B, Wang Y, et al. Turbulent flow simulation
             的峰值频率不受流速影响,而受充液 T 型三通管路                              using large eddy simulation combined with characteristic-
                                                                   based split scheme[J]. Computers & Fluids, 2014, 94:
             的声学特性影响;
                                                                   161–172.
                 (3) 流激噪声的能量主要集中在中低频段,流                         [11] Zhang T, Zhang Y O, Ouyang H. Structural vibration and
             激噪声频谱的峰值频率除了与充液 T 型三通管路                               fluid-borne noise induced by turbulent flow through a 90 ◦
             声学模态相关外,还与耦合模态固有频率值有关;                                piping elbow with/without a guide vane[J]. International
                                                                   Journal of Pressure Vessels and Piping, 2015, 125: 66–77.
                 (4) 随着流速的增大,流噪声与流激噪声的幅
                                                                [12] 徐俊伟, 吴亚锋, 陈耿. 气动噪声数值计算方法的比较与应
             值都增大,但流噪声增大量大于流激噪声增大量。                                用 [J]. 噪声与振动控制, 2012, 32(4): 6–10.
                                                                   Xu Junwei, Wu Yawei, Chen Geng.  Comparison and
                                                                   application on the aero-acoustics numerical computing
                            参 考     文   献
                                                                   methods[J]. Noise and Vibration Control, 2012, 32(4):
                                                                   6–10.
              [1] 柯兵, 谢志强. 管路系统声学设计技术的现状及发展趋势 [J].
                                                                [13] 赵威, 彭旭, 陈明, 等. 变截面管道流噪声数值计算 [J]. 噪声
                 中国舰船研究, 2008, 3(2): 57–63.
                                                                   与振动控制, 2016, 36(3): 48–51, 150.
                 Ke Bing, Xie Zhiqiang. A review of acoustic design tech-
                                                                   Zhao Wei, Peng Xu, Chen Ming, et al. Numerical sim-
                 nologies for shipboard piping system[J]. Chinese Journal
                                                                   ulation of flow-induced noise in the pipelines with vari-
                 of Ship Research, 2008, 3(2): 57–63.
                                                                   able cross-sections[J]. Noise and Vibration Control, 2016,
              [2] 戴安东, 陈刚, 朱石坚. 舰船管路振动噪声控制措施综述 [J].
                                                                   36(3): 48–51, 150.
                 船海工程, 2001(S2): 75–78.
                                                                [14] 张咏鸥, 张涛, 刘继明, 等. 基于 Lighthill 声类比的流激噪声
              [3] 郭涛. 管路的流致振动及噪声研究 [D]. 武汉: 华中科技大学,
                                                                   三维计算及验证 [J]. 舰船科学技术, 2014, 36(9): 55–59, 64.
                 2012.
                                                                   Zhang Yong’ou, Zhang Tao, Liu Jiming, et al. Three di-
              [4] Pittard M T, Evans R P, Maynes R D, et al. Experimen-
                                                                   mensional simulation and validation of the flow-induced
                 tal and numerical investigation of turbulent flow induced
                                                                   noise based on lighthill’s acoustic analogy theory[J]. Ship
                 pipe vibration in fully developed flow[J]. Review of Scien-
                                                                   Science and Technology, 2014, 36(9): 55–59, 64.
                 tific Instruments, 2004, 75(7): 2393.
                                                                [15] Mori M, Masumoto T, Ishihara K. Study on acoustic, vi-
              [5] Etim S U. Internal fluid flow induced vibration of pipes[J].
                                                                   bration and flow induced noise characteristics of t-shaped
                 Journal of Mechanical Design and Vibration, 2018, 6(1):
                                                                   pipe with a square cross-section[J]. Applied Acoustics,
                 1–8.
                                                                   2017, 120: 137–147.
              [6] 柯兵. 管路弯头流致振动的影响因素分析 [J]. 中国舰船研究,
                                                                               ◦
                 2018, 13(2): 70–75.                            [16] 魏志. 阀体后 90 圆形弯管内流场和噪声的数值模拟 [D]. 上
                 Ke Bing. Influence factors analysis of flow-induced vibra-  海: 上海交通大学, 2013.
                 tion of elbow in piping system[J]. Chinese Journal of Ship  [17] 方超, 蔡标华, 马士虎, 等. 基于 BEM/FEM 的船舶注水系统
                 Research, 2018, 13(2): 70–75.                     管路噪声分离预报 [J]. 噪声与振动控制, 2018, 38(5): 89–93.
              [7] 宋佳朋. 管路声传播特性及通海管路噪声源评价研究 [D]. 哈                  Fang Chao, Cai Biaohua, Ma Shihu, et al. Noise separa-
                 尔滨: 哈尔滨工程大学, 2018.                                tion prediction ofwater injection pipeline systems of war-
              [8] 吴石, 张文平, 柳贡民. 海水管路系统中流噪声的小室测量方                   ships based on BEM/FEM[J]. Noise and Vibration Con-
                 法的研究 [J]. 噪声与振动控制, 2006, 26(3): 57–60.            trol, 2018, 38(5): 89–93.
                 Wu Shi, Zhang Wenping, Liu Gongmin. Study on measur-  [18] 方超, 马士虎, 蔡标华, 等. 基于 BEM 的通海阀流噪声与流激
                 ing chamberlet method of flow noise in seawater pipeline  振动噪声数值模拟对比研究 [J]. 舰船科学技术, 2018, 40(5):
                 system[J]. Noise and Vibration Control, 2006, 26(3):  30–34.
                 57–60.                                            Fang Chao, Ma Shihu, Cai Biaohua, et al. Numerical sim-
              [9] Zhang C, Luo Y, Liang J, et al. Flow-induced noise predic-  ulation contrastive study on flow noise and flow induced
                 tion for 90 bend pipe by les and FW-H hybrid method[J].  vibration noise of sea valve based on BEM[J]. Ship Science
                 Scientific Research & Essays, 2014, 9(11): 5–12.   and Technology, 2018, 40(5): 30–34.
   83   84   85   86   87   88   89   90   91   92   93