Page 175 - 《应用声学》2022年第4期
P. 175
第 41 卷 第 4 期 陆志猛等: 薄膜型声学超材料对低频振动的隔声特性分析 673
panels for sound attenuation in the 50–1000 Hz regime[J]. Zhang Zhonggang, Zhu Haoyu, Luo Jian, et al. The in-
Applied Physics Letters, 2010, 96(4): 041906. vestigation on low-frequency broadband acoustic absorp-
[17] Naify C J, Chang C M, McKnight G, et al. Transmis- tion performance of membrane sound-absorbing meta-
sion loss and dynamic response of membrane-type locally material[J]. Journal of Applied Acoustics, 2019, 38(5):
resonant acoustic metamaterials[J]. Journal of Applied 869–875.
Physics, 2010, 108(11): 114905. [22] 陈龙虎. 声学超材料对低频噪声的消声特性 [J]. 应用声学,
[18] Naify C, Chang C, McKnight G, et al. Transmission loss 2020, 39(3): 438–444.
of membrane-type acoustic metamaterials with coaxial Chen Longhu. The muffling characteristics of acoustic
ring masses[J]. Journal of Applied Physics, 2011, 110(12): metamaterials to low frequency noise[J]. Journal of Ap-
124903. plied Acoustics, 2020, 39(3): 438–444.
[19] Ma F, Wu J, Huang M. Resonant modal group the- [23] 米永振, 杨浩森, 雷博, 等. 局域共振型声学超材料薄板带隙
ory of membrane-type acoustical metamaterials for low- 特性的能量解法 [J]. 声学学报, 2020, 45(3): 404–414.
frequency sound attenuation[J]. The European Physical Mi Yongzhen, Yang Haosen, Lei Bo, et al. A variational
Journal Applied Physics, 2015, 71(3): 30504. method of band-gap analysis of metamaterial plates with
[20] Ma F, Wu J, Huang M, et al. A purely flexi- local resonators[J]. Acta Acustica, 2020, 45(3): 404–414.
ble lightweight membrane-type acoustic metamaterial[J]. [24] 陆志猛, 曾庆林, 郑丽兵, 等. 固体推进剂混合装备研究现状与
Journal of Physics D: Applied Physics, 2015, 48(17): 发展 [J]. 固体火箭技术, 2021, 44(3): 372–378.
175105. Lu Zhimeng, Zeng Qinglin, Zheng Libing, et al. Review
[21] 张忠刚, 朱浩宇, 罗剑, 等. 吸声型薄膜声学超材料低频宽带 on solid propellant mixing equipment[J]. Journal of Solid
吸声性能研究 [J]. 应用声学, 2019, 38(5): 869–875. Rocket Technology, 2021, 44(3): 372–378.