Page 68 - 《应用声学》2022年第4期
P. 68
566 2022 年 7 月
所测量得到的缺陷位置在周向和轴向都与实际位 solenoid array coil for pipe inspection[J]. NDT & E Inter-
置吻合度较高,测量得到的缺陷长度比实际长度小 national, 2015, 69: 9–15.
[3] Kim H, Lee J, Kim Y. Circumferential phased array of
5.2 mm,轴向位置与实际位置相差3.1 mm。
shear-horizontal wave magnetostrictive patch transducers
for pipe inspection[J]. Ultrasonics, 2013, 53(2): 423–431.
1035
ᎥᬞࠄᬅͯᎶ [4] Zhou W, Yuan F, Shi T. Guided torsional wave generation
Ꭵᬞࠀͯፇ౧
of a linear in-plane shear piezoelectric array in metallic
Ꭵᬞ҂༏ҵଊ݀ᄊᡰሏ/mm 1025 [5] Kwun H. Magnetostrictive generation and detection of
1030
pipes[J]. Ultrasonics, 2016, 65: 69–77.
longitudinal, torsional, and flexural waves in a steel rod[J].
The Journal of the Acoustical Society of America, 1994,
96(6): 500–507.
1020
[6] Zhang Y, Wang B, Wei X, et al. A study on torsional
guided wave EMAT array and its application in em-
1015 bedment depth inspection of guardrail post[J]. Interna-
0 2 4 6 8 10 12 14 16 18 20
tional Journal of Applied Electromagnetics and Mechan-
ᤰ᥋ᎄՂ
ics, 2020, 64(1–4) : 1065–1072.
图 12 实验缺陷定位结果 [7] Kwun H, Kim S Y, Light G M. The magnetostrictive sen-
sor technology for long range guided wave testing and
Fig. 12 Experimental defect location results
monitoring of structures[J]. Materials Evaluation, 2003,
61(1): 80–84.
4 结论 [8] Pei J, Yousuf M I, Degertekin F L, et al. Lamb wave
tomography and its application in pipe erosion/corrosion
本文采用在一段管道长度上安装两个周向换 monitoring[J]. 2009, 8(4): 189–197.
能器阵列来采集沿管道轴向传播的导波信号的方 [9] Simonetti F, Alqaradawi M Y. Guided ultrasonic wave to-
法,分别用反射波渡越时间及透射波损伤指数来实 mography of a pipe bend exposed to environmental con-
ditions: a long-term monitoring experiment[J]. NDT & E
现管道缺陷轴向及周向定位。针对检测区域内单一 International, 2019, 105: 1–10.
缺陷的情况,利用缺陷与损伤指数的关系,设计了一 [10] Da Y, Dong G, Wang B, et al. A novel approach to surface
种比较迭代方法来确定缺陷在管道周向的位置与 defect detection[J]. International Journal of Engineering
Science, 2018, 133: 181–195.
长度。然后利用反射波的渡越时间来计算缺陷的轴
[11] 李奇, 笪益辉, 王彬, 等. 一种基于深度学习的超声导波缺陷
向位置。理论仿真与实验验证结果表明本方法能够 重构方法 [J]. 固体力学学报, 2021, 42(1): 33–44.
在缺陷轴向位置信息未知的情况下实现缺陷的周 Li Qi, Da Yihui, Wang Bin, et al. Deep learning-assisted
向分布及轴向位置检测。仿真与实验的计算出的缺 accurate defect reconstruction using ultrasonic guided
waves[J]. Chinese Journal of Solid Mechanics, 2021, 42(1):
陷位置与实际的缺陷位置吻合较好。由于换能器阵
33–44.
列探头宽度和间距的限制,缺陷长度分布的检测精 [12] Wang X, Tse P W, Mechefske C K, et al. Experimental
度会受到影响,其检测精度可通过本文所提出的伪 investigation of reflection in guided wave-based inspection
for the characterization of pipeline defects[J]. NDT & E
阵列方法,增加探测通道的数量,减小检测角度来获
International, 2010, 43(4): 365–374.
得更高的精度。本研究为管道缺陷定位提供了可借 [13] 梁伯翱, 赵锴, 王晓娟, 等. 基于超声导波的管道缺陷量化评
鉴的方法和思路,有利于促进导波在管道缺陷检测 估仿真研究 [J]. 西安理工大学学报, 2018, 34(4): 489–494.
中的应用。 Liang Boao, Zhao Kai, Wang Xiaojuan, et al. Simulation
study of the characterization of pipe defect based on ul-
trasonic guided-waves[J]. Journal of Xi’an University of
Technology, 2018, 34(4): 489–494.
参 考 文 献
[14] 邓菲, 吴斌, 何存富. 基于时间反转的管道导波小缺陷检测数
值分析 [J]. 北京工业大学学报, 2008, 34(7): 673–677.
[1] Alleyne D N, Pavlakovic B, Lowe M J S, et al. Rapid, long Deng Fei, Wu Bin, He Cunfu. A time reversal guided wave
range inspection of chemical plant pipework using guided inspection method for small defects in pipes[J]. Journal of
waves[J]. Key Engineering Materials, 2001, 270–273(1): Beijing University of Technology, 2008, 34(7): 673–677.
434–441. [15] 邓菲, 吴斌, 何存富. 基于时反导波检测的管道缺陷圆周定位
[2] Liu Z, Fan J, Hu Y, et al. Torsional mode magnetostric- 研究 [J]. 声学学报, 2008, 33(1): 28–34.
tive patch transducer array employing a modified planar Deng Fei, Wu Bin, He Cunfu. The analysis of crack lo-