Page 117 - 《应用声学》2022年第5期
P. 117
第 41 卷 第 5 期 李楠等: 电力变压器绕组振动声纹特性分析 793
winding fault vibration monitoring[J]. Journal of Shang- [12] 刘云鹏, 罗世豪, 王博闻, 等. 基于 Mel 时频谱 -卷积神经网络
hai Electric Power University, 2020, 36(5): 495–499. 的变压器铁芯夹件松动故障声纹模式识别 [J]. 华北电力大学
[5] 邹德旭, 陈宇民, 钱国超, 等. 一起带平衡绕组的 220 kV 主变 学报 (自然科学版), 2020, 47(6): 52–60, 67.
损坏案例分析 [J]. 变压器, 2019, 56(9): 78–79. Liu Yunpeng, Luo Shihao, Wang Bowen, et al. Voiceprint
Zou Dexu, Chen Yumin, Qian Guochao, et al. A damage pattern recognition of transformer core clip loose fault
case analysis of a 220 kV main transformer with balanced based on Mel time spectrum-convolutional neural net-
windings[J]. Transformer, 2019, 56(9): 78–79. work[J]. Journal of North China Electric Power University
[6] 刘云鹏, 王博闻, 周旭东, 等. 基于 162 台超、特高压变压器的 (Natural Science Edition), 2020, 47(6): 52–60, 67.
声纹特征预警阈值划定研究 [J]. 华北电力大学学报 (自然科学 [13] 刘云鹏, 王博闻, 岳浩天, 等. 基于 50 Hz 倍频倒谱系数与门
版), 2021, 48(5): 45–53. 控循环单元的变压器偏磁声纹识别 [J]. 中国电机工程学报,
Liu Yunpeng, Wang Bowen, Zhou Xudong, et al. Research 2020, 40(14): 4681–4694, 4746.
on the early warning threshold of voiceprint characteristics Liu Yunpeng, Wang Bowen, Yue Haotian, et al. Trans-
based on 162 ultra-high voltage transformers[J]. Journal of former biasing voiceprint recognition based on 50 Hz dou-
North China Electric Power University (Natural Science ble frequency cepstrum coefficient and gated loop unit[J].
Edition), 2021, 48(5): 45–53. Proceedings of the Chinese Society of Electrical Engineer-
[7] 李鹏, 毕建刚, 于浩, 等. 变电设备智能传感与状态感知技术 ing, 2020, 40(14): 4681–4694, 4746.
及应用 [J]. 高电压技术, 2020, 46(9): 3097–3113. [14] 耿琪深, 王丰华, 金霄. 基于 Gammatone 滤波器倒谱系数与
Li Peng, Bi Jiangang, Yu Hao, et al. Intelligent sensing 鲸鱼算法优化随机森林的干式变压器机械故障声音诊断 [J].
and state perception technology and application of substa- 电力自动化设备, 2020, 40(8): 191–196, 224, 197–199.
tion equipment[J]. High Voltage Technology, 2020, 46(9): Geng Qishen, Wang Fenghua, Jin Xiao. Dry-type trans-
3097–3113. former mechanical fault sound diagnosis based on Gam-
[8] 胡静竹, 刘涤尘, 廖清芬, 等. 基于有限元法的变压器电磁振 matone filter cepstrum coefficients and whale algorithm
动噪声分析 [J]. 电工技术学报, 2016, 31(15): 81–88. optimization random forest[J]. Electric Power Automation
Hu Jingzhu, Liu Dichen, Liao Qingfen, et al. Analysis Equipment, 2020, 40(8): 191–196, 224, 197–199.
of transformer electromagnetic vibration and noise based [15] 王丰华, 段若晨, 耿超, 等. 基于 “磁 –机械” 耦合场理论的电
on finite element method[J]. Transactions of the Chinese 力变压器绕组振动特性研究 [J]. 中国电机工程学报, 2016,
Society of Electrical Engineering, 2016, 31(15): 81–88. 36(9): 2555–2562.
[9] 孙涛, 裴春明, 胡静竹, 等. 特高压变压器噪声源模型及仿真 Wang Fenghua, Duan Ruochen, Geng Chao, et al. Re-
分析 [J]. 高电压技术, 2014, 40(9): 2750–2756. search on the vibration characteristics of power trans-
Sun Tao, Pei Chunming, Hu Jingzhu, et al. UHV trans- former windings based on the “magnetic-mechanical” cou-
former noise source model and simulation analysis[J]. High pling field theory[J]. Proceedings of the Chinese Society of
Voltage Technology, 2014, 40(9): 2750–2756. Electrical Engineering, 2016, 36(9): 2555–2562.
[10] Duan X, Zhao T, Liu J, et al. Analysis of winding vibra- [16] 鲁文波, 曲光磊. 油浸式自耦变压器振动噪声研究 [J]. 振动与
tion characteristics of power transformers based on the 冲击, 2019, 38(15): 273–280.
finite-element method[J]. Energies, 2018, 11(9): 1–19. Lu Wenbo, Qu Guanglei. Research on vibration and noise
[11] 段小木. 电力变压器振动发生传播机理及自适应有源噪声控 of oil-immersed autotransformer[J]. Vibration and Shock,
制 [D]. 济南: 山东大学, 2019. 2019, 38(15): 273–280.